

Orin Harris at TeVPA, 2024

The PICO Bubble Chamber Program

Bubble chamber cycle

Pressure expansion puts target fluid in superheated state

Wait for particle interaction to nucleate a bubble, recompress

Data acquisition

Cameras capture stereoscopic bubble images @ ~200 fps

Acoustic sensors & fast pressure transducer capture sound & pressure rise from bubble growth

Adjust (P, T) to control both E_{th} and sensitivity to electron recoils

Confirm E_{th} by neutron calibration

Bubble multiplicity \rightarrow nucleation efficiency

What about backgrounds that nucleate bubbles? Acoustic discrimination

- Sound emission peaks at $r_{bubble} \approx 10 \ \mu m$ at $t \approx 1 \ \mu s$
- Characteristic acoustic signature of single nuclear recoil (track < μm)

What about backgrounds that nucleate bubbles? Acoustic discrimination

- Sound emission peaks at $r_{bubble} \approx 10 \ \mu m$ at $t \approx 1 \ \mu s$
- Characteristic acoustic signature of single nuclear recoil (track < μm)
- Length scale of α track much larger (~40 μ m)
 - \rightarrow separate nucleation sites $\rightarrow \alpha$'s several times louder

• 50 kg C_3F_8 , ran stably down to $E_{th}=1$ keV

- World-leading WIMP-proton limits (2019) ٠ (https://arxiv.org/abs/1902.04031)
- Bellows above the active fluid, separated by a buffer fluid (water).
- Excess of background events at buffertarget interface.

PICO-40L: Right Side Up Design Elimination of buffer fluid, plumbing on bottom

9

PICO-40L (C₃F₈) Current Status

PICO-40L (C₃F₈) Current Status

- Detector fully assembled and operational in 2023-2024
- Stable long-term event rates.
- Exquisite thermal stability and control

Optical/Pressure/Acoustic data

- Optical position reconstruction + Dytran: excellent wall vs bulk, multiplicity reconstruction
- Acoustic sensors confirm previous results: good alpha rejection, observation of radon chain

Projected sensitivity

- Improvement over PICO-60 due to better neutron shielding (2 background events over 1 live year, 1.64x10⁴ kg-days, Q_{seitz}=2.8 keV)
- Right-side-up design removed buffer fluid and therefore excess events at buffer-target interface, validates PICO-500 design

Future: PICO-500

- Ton-scale, C₃F₈ same "right side up" design as PICO-40L
 - 250L jar, 9000kg pressure vessel, 26ft tall, 18.5ft wide water tank
- Assembly in SNOLAB cube hall has begun. Complete in 2025. •

3.8 m

Summary

- PICO-40L validates Right-Side-Up design in anticipation of PICO-500
 - Completed period of stable running.
 Detailed analysis underway
- PICO-500 underground assembly is underway. Data in 2025!

‡ Fermilab

P.S. Cooper, M. Crisler,

A. Sonnenschein

)rexel

UNIVERSITY

D. Priya, S. Priya, Y. Yan

R. Neilson

C.E. Dahl

J. Basu, M. Das, V. Kumar

ψ INDIANA UNIVERSITY SOUTH BEND E. Behnke, C. Cripe, I. Levine,

Northeastern O. Harris

R. Castilloux, R. Fournier, P. Grylls, A. Mathewson, I. Lawson, M. Ralph, S. Sekula

Kavli Institute for Cosmological Physics at The University of Chicago

J.I. Collar

M. Baker, S. Fallows, C. Krauss, Q. Malin, S. Miller, M. Rangen, C. Rethmeier, P. Welingampola

Pacific Northwest NATIONAL LABORATORY

I. Arnquist, C.M. Jackson, B. Loer

E. Adams, M. Bai, K. Clark, J. Corbett, D. Cranshaw, M. Dean, K. Dering, G. Giroux, H. Herrera, A. Mir C. Moore, N. Moss, A. Noble, M. Robert

Université m de Montréal

I. Brooklyn Varela, L. Desmmarais, P. Frédérick, M. Laurin, V. Monette, H. Nozard, A. Robinson, J. Savoie, N. Starinski, V Zacek, C. Wen Chao

J. Farine, A. Le Blanc, C. Licciardi, U. Wichoski

BACKUP

Acoustics

Particle detection with bubble chambers

- In a superheated fluid, bubbles will collapse unless they are large enough to overcome surface tension
- Roughly: bubble nucleation requires energy E_{th} deposited within a "critical radius" r_c
 - \rightarrow Both E_{th} & dE/dx thresholds
- Classical Thermodynamics gives
 (E_{th}, r_c) in terms of (P, T) for a given fluid:

$$E_{th} = 4\pi r_c^2 \left(\sigma - T\frac{\partial\sigma}{\partial T}\right) + \frac{4}{3}\pi r_c^3 \rho_b (h_b - h_l) - \frac{4}{3}\pi r_c^3 (P_b - P_l)$$

Surface energy

Latent Heat (but see <u>1905.12522</u>) Reversible work

Gamma rejection: model comparison

$$\mathcal{P} = Ae^{-Bf(P,T)}$$

Seitz:
$$f(P, T) = Q_{Seitz}$$
 Baxter: $f(P, T) = E_{ion}/r_1\rho_1$

New model accounts for the production of delta electrons: nucleation probability per energy deposition per unit length (not per incident # of photons)

- With the new model, all gamma calibration data with pure C_3F_8 line up well.
- The different response of CF₃I is understood due to the production of Auger electrons on the higher Z nucleus, I.

PICO-60 (C₃F₈)

Run 1 (2016)

30 livedays at 3.3 keV Blind (deaf) analysis 0 nuclear recoil candidates ~1 neutrons expected

Run 2 (2017)

30 livedays at 2.5 keV Blind (deaf) analysis 3 nuclear recoil candidates Consistent with ~1 expected

PICO-60 (C₃F₈)

Run 1 (2016)

30 livedays at 3.3 keV Blind (deaf) analysis 0 nuclear recoil candidates ~1 neutrons expected

Run 2 (2017)

30 livedays at 2.5 keV Blind (deaf) analysis 3 nuclear recoil candidates Consistent with ~1 expected

