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Context

We want to expand the horizon of multi-messenger astrophysics

N\ * Use neutrinos to study the most energetic and
distant astrophysical sources in the Universe

AGNs, SNRs, GRBs... *
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Context

For this, we need to reconstruct the polarization of neutrino signals accurately and precisely

= Uncertainties in polarization reconstruction propagate to uncertainties in the sky map
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SPICE Pulser

The SPICE pulsing campaign provided a unique dataset of broadband radio pulses transmitted inside the ice

= The South Pole Ice Core Experiment

(SPICE) drilled and recovered ice cores up to
a depth of ~1700 m

* Broadband radio pulses were transmitted
from inside the SPICE borehole and
received by ARA (Al —A5) and ARIANNA over

| - 5 km horizontal baselines
= This unique dataset been important for

calibrations and measurements of ice
properties
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SPICE Pulser

ARA observed an anomalous behavior of polarization from SPICE pulses

" Pulsers transmitted as Vpol were observed with higher

Hpol power than expected, even larger in Hpol than Vpol = Oscillatory behavior on signal-to-noise ratio
Al Top 4 Vpol chs. Al Bottom 4 Vpol chs. A5 Vpol chs.
105 %y ! * ¢ ¢ ¢ < -
¢¢+‘ *: : BM* 'ﬁ" """" #"‘*&" """""""""""" %’ 20 :_
WA 13 -
8—“*"*‘; N T A R
. " : : "‘ 16—
- *ees, | | ¢ -
A | ; ‘ﬂ (o] | ....................... | ................... .ﬂ 14 }
% -800 -600 -400 -200 -800 -600 -400 -200 -
t\//) Al Top 4 Hpol chs. Al Bottom 4 Hpol chs. 12—
14 g ....................... ....................... 10 :_
+ +++++++ 13# ++++++ oo e -
13—+ ............... +’++ ................ ....................... + + +++ +++ + + 8:—
YW g TP S
1 +++ ; ' 1600 1400 1200 1000 —800 —600
T e S ﬁ e B ﬁ pulser Height (m)

. Pulser Height (m) P Allison et al, JCAP |2 (2020) 009
Alan Salcedo Gomez (Ohio State)



Birefringence

Polar ice behaves as a biaxially birefringent medium at radio frequencies

" |n birefringent media, the propagation of
electromagnetic radiation depends on its direction
and polarization

= Biaxial birefringent media are characterized by three
parameters along three perpendicular axes, known
as principal axes

" We are exploring biaxial birefringence as a

possible explanation of the anomalous behavior
of polarization in SPICE events
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Birefringence Model

The polarization vector is described by two eigenstates dependent on the principal axes

Indicatrix:

* Ny, ng,n, change with depth

Eigenstates are given by the axes of the intersection ellipse of an indicatrix and the signal’s wavefront

Intersection

My ellipse: 712ﬁ2(12 o’clock)
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* n, and n, are different indices of refraction. D;and D, describe two separate rays
A. Connolly, Phys. Rev.D 105 (2022) 12, 123012
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Birefringence Model

The polarization vector is described by two eigenstates dependent on the principal axes

= Eigenstates are given by the axes of the intersection ellipse of an indicatrix and the signal’s wavefront

Polarization description before: | Polarization description now:
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n, and n, are different indices of refraction. D;and D, describe two separate rays
A. Connolly, Phys. Rev.D 105 (2022) 12, 123012

* Ny, ng,n, change with depth .
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Birefringence Model

This birefringence model is now implemented in AraSim

Simulation: Pulser at SPICE location to A4 from 1600 m depth

Without birefringence With biaxial birefringence:
Vpol Channel Vpol Channel
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& | | Hpol‘Chann‘cl | g Hpol Channel
< <
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Birefringence Model

The polarization of a signal is allowed to rotate in this model

Simulation: Pulser at SPICE location to A4 from 1600 m depth TX: 19 oclock
Without birefringence With biaxial birefringence: —
Polarization
Vpol Channel Vpol Channel rotates because
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go | " Hpol Channel g Hpol Channel Ryc: ) 7 Eigenstates rotate
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Birefringence Model

The polarization eigenstates are allowed to arrive at different times

Simulation: Pulser at SPICE location to A2 from 1600 m depth

Without birefringence: With biaxial birefringence:
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Birefringence Model

The polarization eigenstates are allowed to arrive at different times

Simulation: Pulser at SPICE location to A2 from 1600 m depth Tx and Rx:
. . . . L . . n9Dy(12 o’clock)
Without birefringence: With biaxial birefringence:
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Polarization Reconstruction

Reconstructing the polarization angle from ARA events is possible
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Simulations

Systematic offsets from the reconstruction method
—31 caused by noise in the waveforms
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Polarization Reconstruction

Polarization angle reconstruction on A2 and A4 from simulated pulses at SPICE

=== A4 - Birefringence Model Prediction from A. Connolly, Rev. D 105 (2022) 12, 123012
801 A4 - Reconstructed from Simulated Events w/ Birefringence Model from A. Connolly, Rev. D 105 (2022) 12, 123012
A2 - Birefringence Model Prediction from A. Connolly, Rev. D 105 (2022) 12, 123012
A2 - Reconstructed from Simulated Events w/ Birefringence Model from A. Connolly, Rev. D 105 (2022) 12, 123012
—60- N
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Polarization Reconstruction

Polarization angle reconstruction on A2 and A4 from simulated pulses at SPICE

=== A4 - Birefringence Model Prediction from A. Connolly, Rev. D 105 (2022) 12, 123012
801 A4 - Reconstructed from Simulated Events w/ Birefringence Model from A. Connolly, Rev. D 105 (2022) 12, 123012
A2 - Birefringence Model Prediction from A. Connolly, Rev. D 105 (2022) 12, 123012
A2 - Reconstructed from Simulated Events w/ Birefringence Model from A. Connolly, Rev. D 105 (2022) 12, 123012
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Polarization Reconstruction

Polarization angle reconstruction on A2 and A4 from simulated pulses at SPICE

=== A4 - Birefringence Model Prediction from A. Connolly, Rev. D 105 (2022) 12, 123012
801 A4 - Reconstructed from Simulated Events w/ Birefringence Model from A. Connolly, Rev. D 105 (2022) 12, 123012
A2 - Birefringence Model Prediction from A. Connolly, Rev. D 105 (2022) 12, 123012
A2 - Reconstructed from Simulated Events w/ Birefringence Model from A. Connolly, Rev. D 105 (2022) 12, 123012
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Polarization Reconstruction

Polarization angle reconstruction on A2 and A4 from SPICE data

60
A4 - High Voltage Sparking Pulser SPICE Runs Credit: Justin Flaherty
A2 - High Voltage Sparking Pulser SPICE Runs
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Reconstructed polarization angles for A2 and A4 are also different in data
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Polarization Reconstruction

Polarization angle reconstruction on A2 and A4 from SPICE data

60
A4 - High Voltage Sparking Pulser SPICE Runs Credit: Justin Flaherty
A2 - High Voltage Sparking Pulser SPICE Runs
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10 A4 shows larger variations as a function of depth than A2 in ¥,
This is qualitatively consistent with predictions
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Systematic Uncertainties

Uncertainties on the orientation of principal axes is not uncommon

" Theory assumes that indicatrix has y-axis vertical and | | | 7
. . —(0.20,0.25,0.55): (x,z) rotation 3
-axis a|0ng ice flow © 1.2 1---(0.20,0.25,0.55): (yz) rotation b B,
—~ |- (0.10,0.20,0.70): (x,z) rotation /
L 14l (0.10,0.20,0.70): (y,z) rotation 7
= North Greenland Eemian Ice Drilling (NEEM): a- w’

axis as much as 25° from ice flow (Jordan et al,
2020) and the y-axis 9. 6° from vertical (J. Li, et al,

2018)
= At the South Pole, the tilt angle up to ~10° (IceCube). 0 5 4 5 8 10 _—
Can lead to 20% uncertainties in ng, — ng Tilt angle: 3 (deg) °

T.M.Jordan, . IEEE Transactions on Geoscience
and Remote Sensing, 57 (2019) 11, 8641-8657
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Systematic Uncertainties

These can have a large effect on predictions for polarization reconstruction

* Exploring effects of rotating principal axes around each axis on predictions for polarization
reconstruction angles
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Systematic Uncertainties

These can have a large effect on predictions for polarization reconstruction

* Exploring effects of rotating principal axes around each axis on predictions for polarization
reconstruction angles
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Systematic Uncertainties

These can have a large effect on predictions for polarization reconstruction

* Exploring effects of rotating principal axes around each axis on predictions for polarization
reconstruction angles
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Systematic Uncertainties

These can have a large effect on predictions for polarization reconstruction

* The qualitative shape of W in data can be potentially obtained with a fit in (¢, 8,y) across all five ARA stations

50 A4 v
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p— / —
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20l L AN trend change ~ Models
". \,\ “‘-.,s\‘ X
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= i e Y
o= == T:'.'H-.—-‘..-"—-;-.—: -— _ — ---_—-.-—_____-
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Future Work

Biaxial birefringence effects may have implications for analysis and detector design

Point Source Search:
Principal Axes Orientation Fit: y 4 Modified from J. Torres (2020) and S. Barwick, C. Glaser (2023)

I

= Fit rotation angles on glaciology
measurements of principal axes using
SPICE data set across all ARA stations 0

X

Neutrino Template Analysis:

Credit: Myoungchul Kim

0.08 SIS Therna) Nowe e NEne W = Birefringence should be taken into account in directional neutrino searches

; 0.04
< 0.00 f
[J] !

-0.04 2 0 . o o
B os Hidden e GENETIS is Optimizing Antenna
= e > Signal .
3 2 ‘&% 207.5 ns 8 and Array Designs:
E 0 “ = Signal (Truth), v, Loc.: 158.0 ns
< -2 Template | — temuevaiocis03m = 5 * Exploring the optimization of antenna designs and

200 -0 - 200 £ A detector array layouts accounting for birefringence effects
Time (ns) et

= Can design neutrino templates with birefringence effects

[GENETIS Collaboration] Phys. Rev. D 108 (2023) 10, 102002 15
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Summary

"  We are investigating South Pole ice as a biaxial birefringent medium at radio frequencies.
= Biaxial birefringence is expected to cause rotations in polarization.

"  We are using the unique SPICE pulser data set across all five ARA stations to fit for the

parameters of the birefringence principal axes.

* Biaxial birefringence might need to be accounted for polarization reconstruction and for

performing point source searches of ultra-high energy neutrinos.

= The effects of biaxial birefringence represent opportunities to improve analysis and

optimize detector designs.

16
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* Thank you!



BACKUP I|:Systematic Uncertainties

Rotation of the COF can have a large effect on predictions for polarization reconstruction

" Then, we calculate the effects on A4 by rotating the principal axes by 5° around multiple axes at a time
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BACKUP 2: Systematic Uncertainties

Rotation of the COF can have a large effect on predictions for polarization reconstruction

* Here we try reproducing the data’s behavior with a simple model for cross-pol antenna response §

60
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BACKUP 3: Systematic Uncertainties

Rotation of the COF can have a large effect on predictions for polarization reconstruction

S 160 v
|5
801 o 140
‘o 3
0 2 120
3 60 e
= =
o = 100
o = y 0
=) o Y
401 2 80
O
. £
= §
N

[\
o

600 800 1000 1200 1400 1600 5 |
Pulser Depth [m] -150 -100 -50 0 50 100 150

Azimuthal angle with respect to ice flow ( °)

A. Connolly, Phys. Rev.D 105 (2022) 12, 123012
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BACKUP 4: Systematic Uncertainties

Rotation of the COF can have a large effect on predictions for polarization reconstruction

" We calculate the effects on A2 by rotating the principal axes

15- ] ; .
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BACKUP 5: Polarization Reconstruction

Concepts for Polarization Reconstruction
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BACKUP 6: Polarization Reconstruction

Discrepancies between model and predictions for A4 may be due to the ray tracing algorithm used

—== A4 - Birefringence Model Prediction by A. Connolly, Rev. D 105 (2022) 12, 123012
A4 - Reconstructed from Simulated Events w/ Birefringence Model

—— A4 - Simulated Events w/ Birefringence Model

---- A4 - Simulated Events w/ Birefringence Model and Analytic Ray Tracing

B00 800 1000 1200 1400 1600
Pulser Depth [m]
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