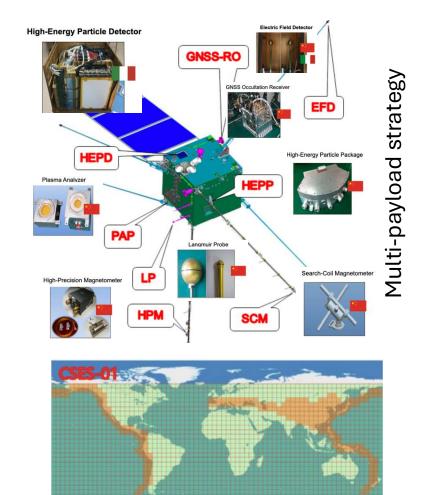


Space weather monitoring and forecasting: a data-driven approach

Marco Cristoforetti

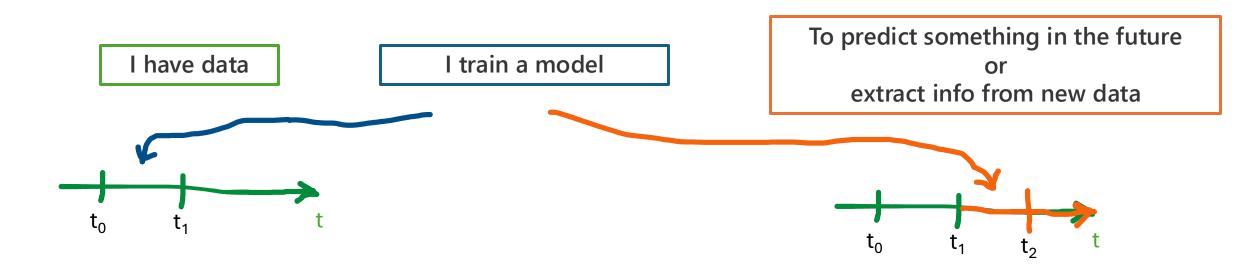
Bruno Kessler Foundation & Trento Institute for Fundamental Physics and Applications on behalf of the CSES-Limadou collaboration


CSES-01 satellite

CSES-01 was launched on 02/02/2018

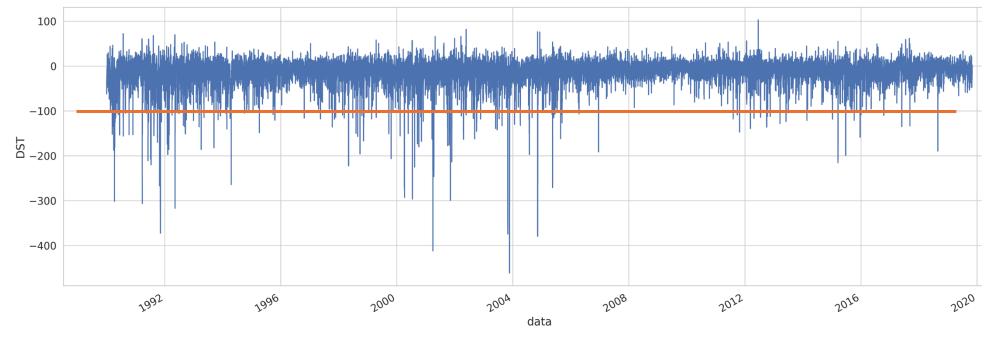
- Sun-Synchronous orbit at 500 km;
- Equipped with 9 instruments
- Payload operation range -65°/65° lat

Category	Payload Name	Observation Targets			
Electro-Magnetic	Electric Field Detector	Electric Field: DC \sim 3.5MHz			
Electro-Magnetic Field	High Precision Magnetometer	Magnetic Field: DC \sim 15Hz			
Field	Search Coil Magnetometer	Magnetic Field: 10Hz ~20kHz			
		Composition : H^+ , He^+ , O^+			
	Plasma Analyzer Package	$N_i: 5 \times 10^2 \sim 1 \times 10^7 cm^{-3}$			
In Situ Plasma		T _i : 500K~10000K			
	Tanana in Dan La	$N_e: 5 \times 10^2 \sim 1 \times 10^7 cm^{-3}$			
	Langmuir Probe	T _e : 500K~10000K			
Plasma	GNSS Occultation Receiver	TEC by GNSS Occultation Signal			
Construction	Tri-Band Beacon	TEC by transmit VH/U/L Signal			
Energetic Particle	Italian HEPD(INFN Prod.)	Proton: 2MeV~200MeV			
Energeut Purucie	High Energy Particle Package	Electron : 100keV~100MeV			



Operation area between lat [-65,65]

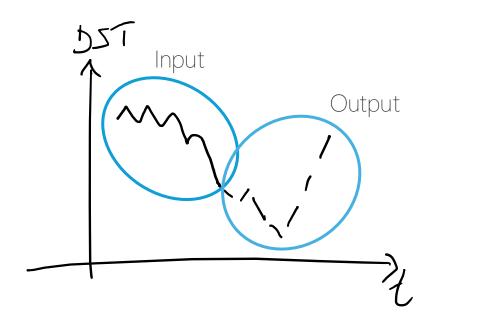
Use case



The Disturbance Storm Time Index

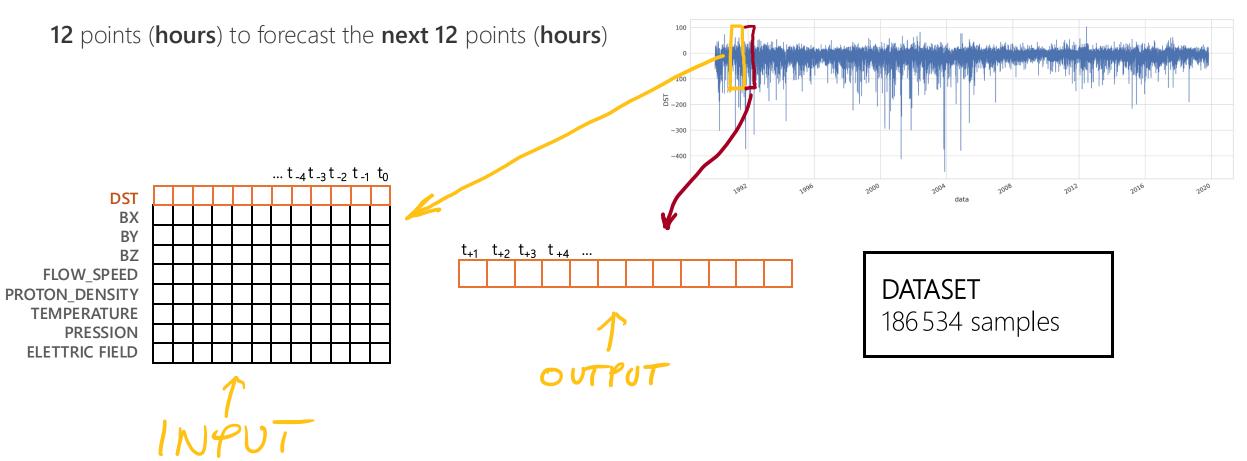
The Dst index is an index of magnetic activity derived from a network of near-equatorial geomagnetic observatories that measures the intensity of the globally symmetrical equatorial electrojet. Dst is maintained at NGDC and is available via <u>FTP</u> from 1957 to the present.

DST > -20 nT	→ OW
-20 nT ≥ DST > -50 nT	→ medium
-50 nT ≥ DST > -100 nT	→ high
DST ≤ -100 nT	\rightarrow intense

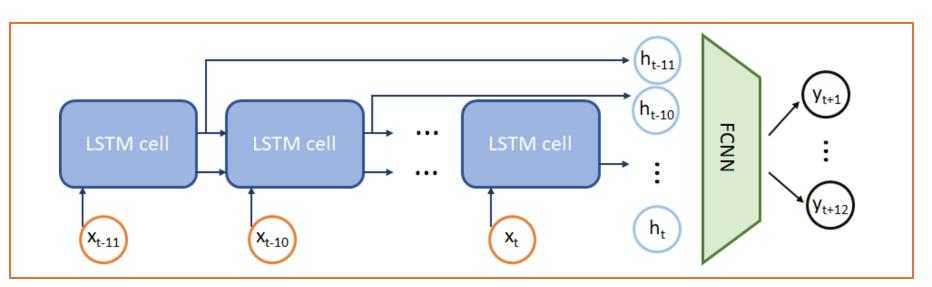


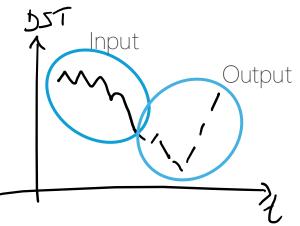
Forecast with Deep Learning

Machine Learning for DST forecast


DST BX, BY, BZ FLOW_SPEED PROTON_DENSITY TEMPERATURE PRESSURE ELECTRIC FIELD

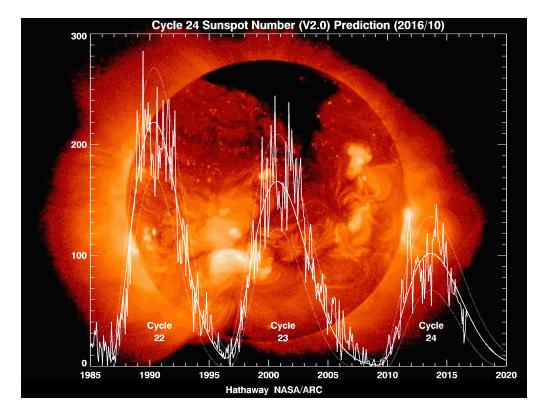
 $PRESSURE = \alpha * PROTON_DENSITY*FLOW_SPEED^2$ $ELECTRIC = \beta * BZ * FLOW_SPEED$


Input – output of the model

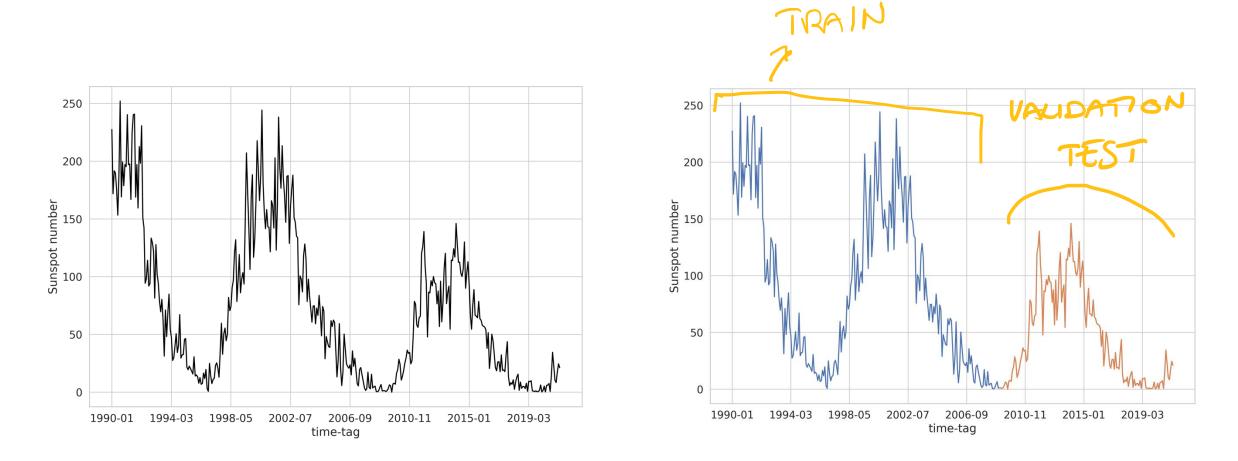


Machine Learning for DST forecast

DST BX, BY, BZ FLOW_SPEED PROTON_DENSITY TEMPERATURE PRESSURE ELECTRIC FIELD



Dealing with time series and rare events

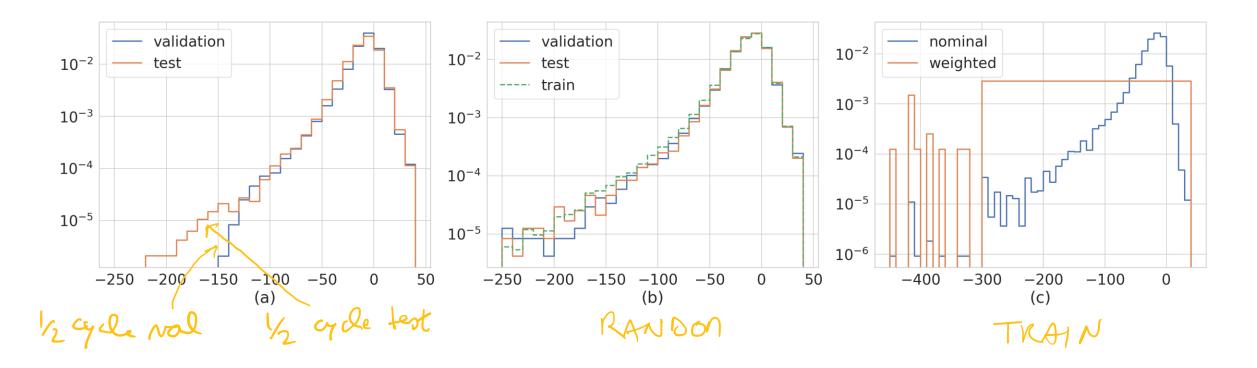

Periodicity and arrow of time. If data are periodic, it is safe to train the model considering at least one complete period and test it on different periods. being the arrow of time fixed and the future unknown, the training operation that make use of points that follow the data used in the test can introduce bias

Forecast of rare events (storms). Training supervised DL model requires a balanced sampling of data referring to quiet and storm periods and proper metrics to measure the performances.

Dataset preparation: solar activity

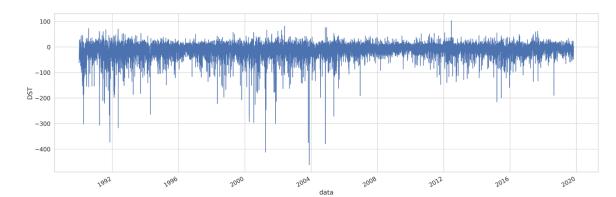
27/08/2024 - TeVPA 2024 - Chicago

The loss function


$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (y_{pred_i} - y_{true})^2}{N}}$ 0 -25 LSD -20 **Persistence model** -75 Looks good, -100reproduce perfectly the shape, -125 but the algorithm does not really learn 194420 194440 194460 194480 194500 194520 hour Storm 1 Storm 2

25

Dataset preparation Random sampling and reweighting



Results

Adopted metric: RMSE =
$$\sqrt{\frac{\sum_{i=1}^{N} (y_{pred_i} - y_{true})^2}{N}}$$

Performance with default sampling looks better

	Train			Valid			Test			
	Pers	Nom	Weight	Pers	Nom	Weight	Pers	Nom	Weight	
t + 1h	5.2	4.7	6.7	4.1	3.8	6.2	4.0	3.8	6.0	
t + 2h	8.3	6.8	7.8	6.4	5.5	7.1	6.4	5.4	6.8	
t + 3h	10.2	8.3	9.0	8.0	6.8	8.2	8.0	6.7	7.9	
t + 4h	11.7	9.3	10.0	9.1	7.6	9.2	9.1	7.5	8.9	
t + 5h	12.9	10.0	10.8	10.0	8.2	10.2	10.0	8.1	9.9	
t + 6h	13.9	10.7	11.9	10.7	8.6	11.4	10.8	8.7	11.0	
t + 7h	14.9	11.4	13.2	11.5	9.1	12.6	11.5	9.2	12.3	
t + 8h	15.7	12.0	14.7	12.1	9.5	14.1	12.2	9.7	13.9	
t + 9h	16.4	12.6	16.1	12.7	9.9	15.5	12.8	10.1	15.5	
t + 10h	17.0	13.1	17.3	13.2	10.3	16.8	13.2	10.4	16.7	
t + 11h	17.6	13.6	18.1	13.6	10.7	17.4	13.6	10.8	17.4	
t + 12h	18.1	14.1	18.4	14.0	10.9	17.4	14.0	11.0	17.6	

Using the weighted dataset the performances on the storms improve

	Dst>	-20 nT		-20 n	-20 nT > Dst > -50 nT -50 nT > Dst > -100 n IDst< -100 nT							
	Pers	Nom	Weight	Pers	Nom	Weight	Pers	Nom	Weight	Pers	Full	Weight
t + 1h	3.4	3.4	5.8	5.6	4.1	6.2	10.0	9.9	11.8	17.0	18.2	23.6
t + 2h	5.2	4.7	6.6	8.8	6.7	7.8	17.5	14.5	13.8	31.4	28.6	27.9
t + 3h	6.3	5.6	7.5	11.0	8.5	9.1	22.9	18.6	16.8	43.2	40.0	35.0
t + 4h	7.0	6.1	8.5	12.5	9.7	10.4	27.4	21.5	18.4	54.1	49.8	43.2
t + 5h	7.5	6.4	9.2	13.7	10.5	11.7	31.0	24.4	20.9	63.8	56.8	46.6
t + 6h	7.9	6.6	10.2	14.9	11.1	13.0	34.3	26.9	22.6	73.2	63.5	50.4
t + 7h	8.2	6.7	11.2	15.9	11.7	14.7	37.6	29.7	24.1	81.4	68.3	<mark>53.8</mark>
t + 8h	8.5	6.9	12.7	16.8	12.4	16.3	40.5	32.1	25.5	87.9	73.0	<mark>56.8</mark>
t + 9h	8.8	7.0	14.0	17.6	12.9	17.7	42.9	34.3	27.4	93.4	77.3	<mark>60.1</mark>
t + 10h	9.0	7.1	15.3	18.2	13.3	18.7	44.9	36.1	29.0	97.4	82.4	<mark>64.6</mark>
t + 11h	9.2	7.2	15.9	18.9	13.7	19.4	46.7	37.8	30.6	100.7	86.7	<mark>69.9</mark>
t + 12h	9.4	7.3	15.9	19.5	14.0	19.9	48.1	39.3	31.8	103.4	90.4	73.8

Confusion matrix Full dataset

Predicted class

slass	
lrue c	

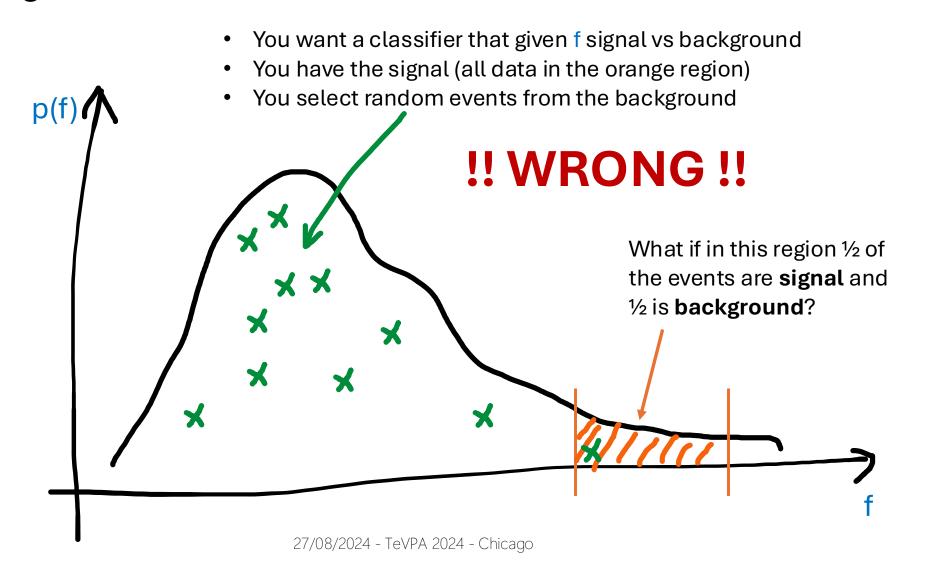
	dst>-20	-20>dst>-50	-50>dst>-100	dst<-100	dst>-20	-20>dst>-50	-50>dst>-100	dst<-100	dst>-20	-20>dst>-50	-50>dst>-100	dst<-100
dst>-20	0.97 (61842)	0.03 (1620)	0.00 (0)	0.00 (0)	0.98 (62054)	0.02 (1407)	0.00 (1)	0.00 (0)	0.95 (60131)	0.05 (3328)	0.00 (3)	0.00 (0)
-20>dst>-50	0.14 (1633)	0.84 (10063)	0.02 (251)	0.00 (0)	0.11 (1361)	0.88 (10516)	0.01 (70)	0.00 (0)	0.15 (1817)	0.82 (9810)	0.03 (319)	0.00 (1)
-50>dst>-100	0.00 (3)	0.18 (244)	0.80 (1095)	0.02 (34)	0.00 (1)	0.31 (426)	0.68 (940)	0.01 (9)	0.00 (0)	0.24 (326)	0.73 (1008)	0.03 (42)
dst<-100	0.00 (0)	0.01 (1)	0.22 (33)	0.77 (115)	0.00 (0)	0.00 (0)	0.42 (63)	0.58 (86)	0.00 (0)	0.00 (0)	0.36 (53)	0.64 (96)
		persister	nce t + 1			nomin	al t + 1			weigh	tt + 1	
dst>-20	0.94 (59398)	0.06 (4113)	0.00 (7)	0.00 (0)	0.97 (61337)	0.03 (2168)	0.00 (13)	0.00 (0)	0.87 (55532)	0.12 (7699)	0.00 (272)	0.00 (15)
-20>dst>-50	0.32 (3847)	0.62 (7340)	0.06 (701)	0.00 (4)	0.37 (4343)	0.62 (7431)	0.01 (118)	0.00 (0)	0.20 (2322)	0.72 (8620)	0.08 (911)	0.00 (39)
-50>dst>-100	0.15 (209)	0.32 (447)	0.45 (621)	0.07 (103)	0.09 (121)	0.56 (776)	0.34 (469)	0.01 (14)	0.04 (57)	0.32 (439)	0.59 (811)	0.05 (73)
dst<-100	0.17 (24)	0.19 (28)	0.35 (50)	0.29 (42)	0.09 (13)	0.19 (27)	0.58 (84)	0.14 (20)	0.03 (4)	0.15 (21) weigh	0.49 (71)	0.33 (48)

27/08/2024 - TeVPA 2024 - Chicago

Confusion matrix Data with input **DST > -20nT**

Predicted class

class	
rueo	
—	


	dst>-20	-20>dst>-50	-50>dst>-100	dst<-100	dst>-20	-20>dst>-50	-50>dst>-100	dst<-100	dst>-20	-20>dst>-50	-50>dst>-100	dst<-100
dst>-20	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.98	0.02	0.00	0.00
	(51499)	(0)	(0)	(0)	(51357)	(140)	(2)	(0)	(50597)	(894)	(7)	(1)
-20>dst>-50	1.00	0.00	0.00	0.00	0.85	0.15	0.00	0.00	0.69	0.29	0.02	0.00
	(1380)	(0)	(0)	(0)	(1175)	(204)	(1)	(0)	(954)	(404)	(22)	(0)
-50>dst>-100	1.00	0.00	0.00	0.00	0.38	0.50	0.12	0.00	0.32	0.50	0.16	0.02
	(50)	(0)	(0)	(0)	(19)	(25)	(6)	(0)	(16)	(25)	(8)	(1)
dst<-100	1.00	0.00	0.00	0.00	0.40	0.60	0.00	0.00	0.20	0.80	0.00	0.00
	(5)	(0)	(0)	(0)	(2)	(3)	(0)	(0)	(1)	(4)	(0)	(0)
		persister	nce t + 3			nomin	nalt+3			weigh	ntt + 3	
dst>-20	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.96	0.04	0.00	0.00
	(50808)	(0)	(0)	(0)	(50646)	(159)	(3)	(0)	(48867)	(1824)	(110)	(7)
-20>dst>-50	1.00	0.00	0.00	0.00	0.90	0.10	0.00	0.00	0.66	0.30	0.03	0.01
	(1941)	(0)	(0)	(0)	(1744)	(194)	(3)	(0)	(1276)	(583)	(65)	(17)
-50>dst>-100	1.00	0.00	0.00	0.00	0.58	0.35	0.08	0.00	0.33	0.39	0.24	0.04
	(165)	(0)	(0)	(0)	(95)	(57)	(13)	(0)	(54)	(65)	(40)	(6)
	1.00	0.00	0.00	0.00	0.50	0.40	0.10	0.00	0.10	0.65	0.15	0.10
dst<-100	1.00 (20)	(0)	(0)	(0)	(10)	(8)	(2)	(0)	(2)	(13)	(3)	(2)

27/08/2024 - TeVPA 2024 - Chicago

Searching for rare events

