Overconfidence in Non-Poissonian Template Fitting

Yitian Sun

with Yuqing Wu, Tracy R. Slatyer, and Siddharth Mishra-Sharma

TeVPA 2024 | Aug 26th | KICP University of Chicago

The NSF Institute for Artificial Intelligence and Fundamental Interactions

A long time ago in the galactic center far, far away...

Fermi telescope image <-- 40° -> data: 2009 - now

morphology: spherical-like, extended up to 15°

data: 2009 - now

spherical-like, extended up to 15°

Hypothesis I: An otherwise unseen, unresolved population of millisecond pulsars.

Hypothesis I: An otherwise unseen, unresolved population of millisecond pulsars. Hypothesis II: Dark Matter annihilation, e.g. $\chi\chi \rightarrow b\bar{b}$, with mass ~ 40 GeV.

data: 2009 - now

extended up to 15°

Hypothesis I: An otherwise unseen, unresolved population of millisecond pulsars. Hypothesis II: Dark Matter annihilation, e.g. $\chi\chi \rightarrow b\bar{b}$, with mass ~ 40 GeV. Morphology

Small-scale structures

. . .

Hypothesis I: An otherwise unseen, unresolved population of millisecond pulsars. Hypothesis II: Dark Matter annihilation, e.g. $\chi\chi \rightarrow b\bar{b}$, with mass ~ 40 GeV. Morphology

Small-scale structures

~ stellar bulge

- - -

Hypothesis I: An otherwise unseen, unresolved population of millisecond pulsars. Hypothesis II: Dark Matter annihilation, e.g. $\chi\chi \rightarrow b\bar{b}$, with mass ~ 40 GeV. Morphology

Small-scale structures

~ stellar bulge

(g)NFW

- - -

Hypothesis I: An otherwise unseen, unresolved population of millisecond pulsars. Hypothesis II: Dark Matter annihilation, e.g. $\chi\chi \rightarrow b\bar{b}$, with mass ~ 40 GeV.

~ stellar bulge

unresolved point sources

 $\chi\chi \rightarrow b\bar{b}$, with mass ~ 40 GeV.

. . .

Diffuse i.e. Poissonian data: $D \sim \text{Pois}\left(\sum S_i \Phi_i(x)\right)$

4

Diffuse i.e. Poissonian data:

 $D \sim \operatorname{Pois}\left(\sum S_i \Phi_i(x)\right)$

 π^0 + bremsstrahlung

inverse Compton scattering

Diffuse i.e. Poissonian data:

+ unresolved point sources:

 $D \sim \operatorname{Pois}\left(\sum_{i} S_{i} \Phi_{i}(x)\right)$

- $D \sim \text{Pois}\left(\sum_{i} S_{i} \Phi_{i}(x) + \Phi_{\text{PS}}(x)\right)$ with $\Delta \Phi_{\text{PS}}(x) \sim \text{Pois}\left(S_{j} T_{j}(x)\right)$

Diffuse i.e. Poissonian data:

+ unresolved point sources:

To understanding the difference in likelihood:

- $D \sim \operatorname{Pois}\left(\sum S_i \Phi_i(x)\right)$
- $D \sim \text{Pois}\left(\sum_{i} S_{i} \Phi_{i}(x) + \Phi_{\text{PS}}(x)\right)$ with $\Delta \Phi_{\text{PS}}(x) \sim \text{Pois}\left(S_{j} T_{j}(x)\right)$

Diffuse i.e. Poissonian data:

+ unresolved point sources:

To understanding the difference in likelihood:

Diffuse:

 $D \sim \operatorname{Pois}\left(\sum S_i \Phi_i(x)\right)$

5

 $D \sim \text{Pois}\left(\sum_{i} S_{i} \Phi_{i}(x) + \Phi_{\text{PS}}(x)\right)$ with $\Delta \Phi_{\text{PS}}(x) \sim \text{Pois}\left(S_{j} T_{j}(x)\right)$

Diffuse i.e. Poissonian data:

+ unresolved point sources:

To understanding the difference in likelihood:

Diffuse:

- $D \sim \operatorname{Pois}\left(\sum_{i} S_{i} \Phi_{i}(x)\right)$
- $D \sim \text{Pois}\left(\sum_{i} S_{i} \Phi_{i}(x) + \Phi_{\text{PS}}(x)\right)$ with $\Delta \Phi_{\text{PS}}(x) \sim \text{Pois}\left(S_{j} T_{j}(x)\right)$

a double/compound poisson process.

Unresolved point sources:

Diffuse i.e. Poissonian data:

+ unresolved point sources:

To understanding the difference in likelihood:

Diffuse:

- $D \sim \operatorname{Pois}\left(\sum_{i} S_{i} \Phi_{i}(x)\right)$

a double/compound poisson process.

Unresolved point sources:

 $D \sim \text{Pois}\left(\sum_{i} S_{i} \Phi_{i}(x)\right)$ Diffuse i.e. Poissonian data: + unresolved point sources:

Non-Poissonian Template Fitting is a likelihood (-based fitting method) that include unresolved point sources. It achieves this by (implicitly) accounting for all the ways in which an observed count in a pixel is made up.

6

- $D \sim \text{Pois}\left(\sum_{i} S_{i} \Phi_{i}(x) + \Phi_{\text{PS}}(x)\right)$ with $\Delta \Phi_{\text{PS}}(x) \sim \text{Pois}\left(S_{j} T_{j}(x)\right)$

 $D \sim \text{Pois}\left(\sum_{i} S_{i} \Phi_{i}(x)\right)$ Diffuse i.e. Poissonian data: + unresolved point sources:

Non-Poissonian Template Fitting is a likelihood (-based fitting method) that include unresolved point sources. It achieves this by (implicitly) accounting for all the ways in which an observed count in a pixel is made up.

$$3 = 1 + 1 + 1 = 1 + 2$$

- $D \sim \text{Pois}\left(\sum_{i} S_{i} \Phi_{i}(x) + \Phi_{\text{PS}}(x)\right)$ with $\Delta \Phi_{\text{PS}}(x) \sim \text{Pois}\left(S_{j} T_{j}(x)\right)$

a double/compound poisson process.

 $D \sim \operatorname{Pois}\left(\sum S_i \Phi_i(x)\right)$ Diffuse i.e. Poissonian data: + unresolved point sources:

Non-Poissonian Template Fitting is a likelihood (-based fitting method) that include unresolved point sources. It achieves this by (implicitly) accounting for all the ways in which an observed count in a pixel is made up.

- $D \sim \text{Pois}\left(\sum_{i} S_{i} \Phi_{i}(x) + \Phi_{\text{PS}}(x)\right)$ with $\Delta \Phi_{\text{PS}}(x) \sim \text{Pois}\left(S_{j} T_{j}(x)\right)$

a double/compound poisson process.

 $D \sim \operatorname{Pois}\left(\sum_{i} S_{i} \Phi_{i}(x)\right)$ Diffuse i.e. Poissonian data: + unresolved point sources:

Non-Poissonian Template Fitting is a likelihood (-based fitting method) that include unresolved point sources. It achieves this by (implicitly) accounting for all the ways in which an observed count in a pixel is made up.

- $D \sim \text{Pois}\left(\sum_{i} S_{i} \Phi_{i}(x) + \Phi_{\text{PS}}(x)\right)$ with $\Delta \Phi_{\text{PS}}(x) \sim \text{Pois}\left(S_{j} T_{j}(x)\right)$

a double/compound poisson process.

Diffuse i.e. Poissonian data: $D \sim \text{Pois}\left(\sum S_i \Phi_i(x)\right)$ + unresolved point sources: $D \sim \text{Pois}\left(\sum S_i \Phi_i(x) + \Phi_{\text{PS}}(x)\right)$ with $\Delta \Phi_{\text{PS}}(x) \sim \text{Pois}\left(S_j T_j(x)\right)$

Non-Poissonian Template Fitting is a likelihood (-based fitting method) that include unresolved point sources. It achieves this by (implicitly) accounting for all the ways in which an observed count in a pixel is made up.

6

Diffuse i.e. Poissonian data:

+ unresolved point sources:

 $D \sim \operatorname{Pois}\left(\sum S_i \Phi_i(x)\right)$ $D \sim \text{Pois}\left(\sum_{i} S_{i} \Phi_{i}(x) + \Phi_{\text{PS}}(x)\right)$

7

Diffuse i.e. Poissonian data:

+ unresolved point sources:

$$D \sim \operatorname{Pois}\left(\sum S_{i}\right)$$
$$D \sim \operatorname{Pois}\left(\sum S_{i}\right)$$

Likelihood from different pixels are still independent.

 $S_i \Phi_i(x)$

7

 $_{i}\Phi_{i}(x) + \Phi_{\rm PS}(x)$

Diffuse i.e. Poissonian data:

+ unresolved point sources:

$$D \sim \operatorname{Pois}\left(\sum S_{i}\right)$$
$$D \sim \operatorname{Pois}\left(\sum S_{i}\right)$$

Likelihood from different pixels are still independent.

with point spread function (PSF)

 $S_i \Phi_i(x)$

7

 $_{i}\Phi_{i}(x) + \Phi_{\rm PS}(x)$

7

Diffuse i.e. Poissonian data:

+ unresolved point sources:

$$D \sim \operatorname{Pois}\left(\sum S_{i}\right)$$
$$D \sim \operatorname{Pois}\left(\sum S_{i}\right)$$

Likelihood from different pixels are still independent.

with point spread function (PSF)

 $D \sim \text{Pois}\left(\text{PSF}\left|\sum S_i \Phi_i(x)\right|\right)$

- $S_i \Phi_i(x)$
- $_{i}\Phi_{i}(x) + \Phi_{\rm PS}(x)$

Diffuse i.e. Poissonian data:

+ unresolved point sources:

$$D \sim \operatorname{Pois}\left(\sum S_i \Phi_i(x)\right)$$
$$D \sim \operatorname{Pois}\left(\sum S_i \Phi_i(x) + \frac{1}{2}\right)$$

Likelihood from different pixels are still independent.

7

with point spread function (PSF)

$$D \sim \operatorname{Pois}\left(\sum S_i \tilde{\Phi}_i(x)\right)$$

 $\vdash \Phi_{\rm PS}(x)$

Diffuse i.e. Poissonian data:

+ unresolved point sources:

$$D \sim \operatorname{Pois}\left(\sum S_i \Phi\right)$$
$$D \sim \operatorname{Pois}\left(\sum S_i \Phi\right)$$

Likelihood from different pixels are still independent.

7

with point spread function (PSF)

$$\Phi_i(x)$$
 $D \sim \operatorname{Pois}\left(\sum S_i \tilde{\Phi}_i(x)\right)$

 $_{i}\Phi_{i}(x) + \Phi_{\text{PS}}(x)$ $D \sim \text{Pois}\left(\sum S_{i}\tilde{\Phi}_{i}(x) + \text{PSF}[\Phi_{\text{PS}}(x)]\right)$

Diffuse i.e. Poissonian data:

+ unresolved point sources:

$$D \sim \operatorname{Pois}\left(\sum S_i \Phi_i(x)\right)$$
$$D \sim \operatorname{Pois}\left(\sum S_i \Phi_i(x) + \Phi_{\operatorname{PS}}(x)\right)$$

Likelihood from different pixels are still independent. No longer true in the presence of PSF.

with point spread function (PSF)

$$D \sim \operatorname{Pois}\left(\sum S_i \tilde{\Phi}_i(x)\right)$$

$$D \sim \text{Pois}\left(\sum S_i \tilde{\Phi}_i(x) + \text{PSF}[\Phi_{\text{PS}}(x)]\right)$$

Diffuse i.e. Poissonian data:

+ unresolved point sources:

$$D \sim \operatorname{Pois}\left(\sum S_i \Phi_i(x)\right)$$
$$D \sim \operatorname{Pois}\left(\sum S_i \Phi_i(x) + \Phi_{\operatorname{PS}}(x)\right)$$

Likelihood from different pixels are still independent. No longer true in the presence of PSF.

NPTF approximately accounts for the PSF effect by correctly^{*} computing the 1-pixel (marginal) likelihood...

...but still treating the total likelihood as a product of that for each pixel.

with point spread function (PSF)

$$D \sim \operatorname{Pois}\left(\sum S_i \tilde{\Phi}_i(x)\right)$$

$$D \sim \text{Pois}\left(\sum S_i \tilde{\Phi}_i(x) + \text{PSF}[\Phi_{\text{PS}}(x)]\right)$$

Diffuse i.e. Poissonian data:

+ unresolved point sources:

$$D \sim \operatorname{Pois}\left(\sum S_i \Phi_i(x)\right)$$
$$D \sim \operatorname{Pois}\left(\sum S_i \Phi_i(x) + \Phi_{\operatorname{PS}}(x)\right)$$

Likelihood from different pixels are still independent. No longer true in the presence of PSF.

NPTF approximately accounts for the PSF effect by correctly^{*} computing the 1-pixel (marginal) likelihood...

$$3 = 1 + 1 + 1 \dots$$

Can be 10% of a 10-co

...but still treating the total likelihood as a product of that for each pixel.

with point spread function (PSF)

$$D \sim \operatorname{Pois}\left(\sum S_i \tilde{\Phi}_i(x)\right)$$

$$D \sim \text{Pois}\left(\sum_{i} \tilde{\Phi}_{i}(x) + \text{PSF}[\Phi_{\text{PS}}(x)]\right)$$

ount source

Diffuse i.e. Poissonian data:

+ unresolved point sources:

$$D \sim \operatorname{Pois}\left(\sum S_i \Phi_i(x)\right)$$
$$D \sim \operatorname{Pois}\left(\sum S_i \Phi_i(x) + \Phi_{\operatorname{PS}}(x)\right)$$

Likelihood from different pixels are still independent. No longer true in the presence of PSF.

NPTF approximately accounts for the PSF effect by correctly^{*} computing the 1-pixel (marginal) likelihood...

$$\begin{bmatrix} 3 \end{bmatrix} = 1 + 1 + 1 \dots \\ f \\ Can be 10\% of a 10-ce$$

...but still treating the total likelihood as a product of that for each pixel.

*A related approximation: point source templates are slow-varying compared to the PSF.

with point spread function (PSF)

$$D \sim \operatorname{Pois}\left(\sum S_i \tilde{\Phi}_i(x)\right)$$

$$D \sim \text{Pois}\left(\sum S_i \tilde{\Phi}_i(x) + \text{PSF}[\Phi_{\text{PS}}(x)]\right)$$

Fermi's point spread function (PSF)

ount source

Diffuse i.e. Poissonian data:

+ unresolved point sources:

$$D \sim \text{Pois}\left(\sum S_i \Phi_i(x)\right)$$
$$D \sim \text{Pois}\left(\sum S_i \Phi_i(x) + \Phi_{\text{PS}}(x)\right)$$

Likelihood from different pixels are still independent. No longer true in the presence of PSF.

NPTF approximately accounts for the PSF effect by correctly^{*} computing the 1-pixel (marginal) likelihood...

$$\begin{bmatrix} 3 \end{bmatrix} = 1 + 1 + 1 \dots \\ f \\ Can be 10\% of a 10-c$$

...but still treating the total likelihood as a product of that for each pixel.

*A related approximation: point source templates are slow-varying compared to the PSF.

How reliable are the posteriors produced from this likelihood?

with point spread function (PSF)

$$D \sim \operatorname{Pois}\left(\sum S_i \tilde{\Phi}_i(x)\right)$$

$$D \sim \text{Pois}\left(\sum_{i} \tilde{\Phi}_{i}(x) + \text{PSF}[\Phi_{\text{PS}}(x)]\right)$$

Fermi's point spread function (PSF)

ount source

8

Example: fits to many simulations

For this talk, I will focus on one of sources of NPTF's overconfidence: un-modeled inter-pixel correlations.

8

Pointed out in Collin et al 2018

9

We fit for overall normalization, against simulated data, to test coverage.

PSF $\sigma = 0.8^{\circ}$ simulation

PSF of one source

With a single template, fitted normalization \sim total count. Total count likelihood given by NPTF is overconfident!

coverage

We fit for overall normalization, against simulated data, to test coverage.

11

In this toy example, 2-pixel correlation can be recaptured with an Gaussian approximation to the image likelihood, yielding a fairly well-calibrated fit.

We fit for overall normalization, against simulated data, to test coverage.

11

Modeling multi-pixel correlation in the likelihood is inherently hard.

In this toy example, 2-pixel correlation can be recaptured with an Gaussian approximation to the image likelihood, yielding a fairly well-calibrated fit.

We fit for overall normalization, against simulated data, to test coverage.

11

Modeling multi-pixel correlation in the likelihood is inherently hard.

$$p(\theta|)$$

In this toy example, 2-pixel correlation can be recaptured with an Gaussian approximation to the image likelihood, yielding a fairly well-calibrated fit.

We fit for overall normalization, against simulated data, to test coverage.

Aside: share the same total count likelihood profile but NPTF with different PSF gives different results (gives correct result for no PSF case)

Modeling multi-pixel correlation in the likelihood is inherently hard.

In this toy example, 2-pixel correlation can be recaptured with an Gaussian approximation to the image likelihood, yielding a fairly well-calibrated fit.

Nominal coverage

0.4

Overconfident

0.8

0.6

1.0

coverage

NPTF

0.8

Actual coverage 9.0

0.2

0.0

0.0

Gaussian

0.2

Neural Posterior Estimator (as an example for SBI)

12

Neural Posterior Estimator (as an example for SBI)

With energy binning: even more complicated correlations.

Summary

- Non-Poissonian Template Fitting may be overconfident in fits of the Galactic Center.
- Un-modeled positive correlations between pixels causes the likelihood for point source template normalization to be overconfident.
- Preliminarily, this effect accounts for a significant portion of the observed overconfidence in our tests. More careful study upcoming.
- Simulation-Based Inference may be a solution to this issue.

Summary

- Non-Poissonian Template Fitting may be overconfident in fits of the Galactic Center.
- Un-modeled positive correlations between pixels causes the likelihood for point source template normalization to be overconfident.
- Preliminarily, this effect accounts for a significant portion of the observed overconfidence in our tests. More careful study upcoming.
- Simulation-Based Inference may be a solution to this issue.

Thank you!

Backup slides

NPTF fitting de-correlated data in toy example

