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Why Consider Dark Matter Microphysics?

• CDM does extremely well at the largest 
scales we’ve tested it at. 

• Deviations at smaller scales have been 
detected hinting at possible dark matter 
microphysics. It is also well-motivated 
theoretically.

• The imprints of dark matter microphysics 
can occur at a variety of scales, but are 
more pronounced for smaller masses.

3

[2010.02924]



Aditya Parikh TeVPA 2024 - August 29, 2024 

Astrophysical Imprints?
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• On smaller scales, introducing self-interactions can a change the 
dark matter density profile. 

• Inner regions of subhalos are thermalized due to high interaction 
rates. Outer regions on the other hand are closer to an NFW profile. 
The characteristic radius is where a particle scatters once per the 
object’s lifetime.

• Strong/weak lensing measurements, stellar kinematics, and rotation 
curves allow us to pin down the dark matter density profile.

• Different particle physics models produce different behaviors and 
Sommerfeld enhancement can significantly alter the naive scaling at 
low velocities. [See 2003.00021, 2012.11606 for a systematic EFT 
approach to this problem.]

• Larger cross sections carry more pronounced effects.

Long range Yukawa potential fit to 
results inferred from Dwarfs, LSBs, 
and Clusters. [1508.03339]
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Gravothermal Collapse

• Halo evolution sequence for an initially NFW profile. The same sequence holds 
for truncated NFW profiles as well as tidally stripped profiles. [1901.00499]

• Self-interactions begin thermalizing the inner region, increasing the temperature, and forming a 
gradually expanding core.

• The expansion halts as an isothermal core is formed. The velocity is roughly constant.

• Core collapse is initiated. The core becomes denser and hotter as it shrinks in size, but remains 
isothermal. The evolution is self-similar.

• Finally, we enter the short mean free path regime and the core becomes optically thick to self-
interactions. The core attains its maximum mass, and the density and temperature increase rapidly in 
this phase.



•How can we go after deviations in the subhalo mass 
function, especially at lower mass scales where the 
deviations are large and subhalos are dark?

•Can we probe gravothermally collapsed cores or other 
deviations to the dark matter density profile?
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Streams as Detectors?
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d = fpeak × arclength
Δmm

•  and  characterize* the velocity kicks imparted by the perturber.

• What are the distribution of these variables? How many such events do 
we expect?
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The Semi-Analytic Approach
• Semi-analytic tools initialize and generate 

various Milky Way-like realizations, by 
seeding an initial distribution of subhalos 
of various masses around the galaxy and 
then evolving them in the host potential.

• Semi-analytic approaches allow us to run 
lots of samples quickly which helps 
combat effects such as halo-to-halo 
variance, etc.

• Performing robust population studies is 
crucial in critically evaluating the extent 
to which CDM subhalos can create the 
observed features in streams. 

11
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Summary

• SIDM can alter the dark matter density profiles of subhalos, especially for 
lower mass objects. Streams provide a useful detection avenue for dark 
substructure.

• We are currently in the process of establishing the CDM baseline expectation 
for the effects on streams. This includes both the rare interactions which can 
produce gaps and the more common interactions which increase the inherent 
velocity dispersion and lead to heating.

• Our method allows us to explore the effects of various density profiles of the 
perturbing subhalos on streams as well which can lead to complementary 
constraints on the dark matter microphysics.

12
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Sommerfeld Enhancement

• A Classical Analogy

• w/o gravity           

• w/ gravity             

• Non-perturbative effect that can be treated quantum mechanically

• Match a field theory calculation onto a quantum mechanical potential and solve the 
corresponding Schrödinger equation

σ0 = πR2

σ = πb2
max = σ0(1 +

v2
esc

v2 )

14
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Case Studies: Scalar & Pseudoscalar Exchange

How do we set well-defined boundary conditions for  potentials?

Vscalar(r) = −
λ2

4πr
e−mϕr

Vpseudoscalar(r) =
λ2

4π ( 4πδ3( ⃗r)
4m2

χ − m2
ϕ ( 1

2
− 2S1 ⋅ S2) −

4πδ3( ⃗r)
3m2

χ
e−mϕrS1 ⋅ S2

+
e−mϕr

m2
χ

m2
ϕ

3r
S1 ⋅ S2 +

3(S1 ⋅ ̂r)(S2 ⋅ ̂r) − S1 ⋅ S2

r3 (1 + mϕr +
m2

ϕr2

3 ) )
r−3
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Matching Prescription

• Short distances 
correspond to semi-
relativistic momenta

• QFT is a better 
description than the 
effective QM potential

• Sommerfeld enhancement 
is important at large 
distances

16
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Setting Boundary Conditions

• How do we access the QFT 
information?

• The first Born approximation in quantum 
mechanics faithfully reproduces tree-level QFT

• This alters the wavefunction and its derivative

Ka
ℓs,ℓ′￼s′￼

= −
2μ
k ∫

a

0
drsℓ′￼(kr)Vℓs,ℓ′￼s′￼(r)sℓ(kr)

uℓs,ℓ′￼s′￼(a) ∼ δℓs,ℓ′￼s′￼sℓ(ka) + Ka
ℓs,ℓ′￼s′￼

cℓ(ka)
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Numerical Results: Scalar Exchange

• Numerical cross section vs. 
QFT tree-level cross section

• Sommerfeld enhancement at 
low velocities

• Numerical results agree with 
and without our matching 
procedure!
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Numerical Results: Pseudoscalar Exchange

• Numerical cross section vs. 
QFT tree-level cross section

• No Sommerfeld enhancement 
at low velocities

• Effectively a short-range 
potential
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Sommerfeld Enhancement from Feynman Diagrams: 
Pseudoscalar

• Tree-level has s- and t-channel diagrams

• Box diagram for the 1-loop process

• Pseudoscalar case

• t-channel velocity suppressed in the NR limit

•
M1−loop

Mtree
∼

λ2

32π2
log

m2
χ

m2
ϕ

20
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Sommerfeld Enhancement from Feynman Diagrams: 
Scalar

• Tree-level has s- and t-channel diagrams

• Box diagram for the 1-loop process

• Scalar case

• t-channel dominant in the NR limit

•
M1−loop

Mtree
∼

λ2mχ

4πmϕ
→ mϕ ≲

λ2mχ

4π

21
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Singular or Not?

• Is the pseudoscalar potential singular?

• Do singular potentials have phenomenological implications?

• Extensive reviews in the literature exploring singular potentials. Two primary classification 
schemes exist. The first classifies potentials as singular if they diverge faster than  at the 
origin. The second classifies potentials as singular if they arise from non-renormalizable 
operators in QFT.

• More recently, it has been claimed that this has implications for SIDM and Sommerfeld 
enhancement for pseudoscalars. In particular, they introduce square-well regulators, but treat the 
depth of the square well and the coupling strength as free parameters, instead of matching to a 
perturbative QFT.

r−2

22
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An Aside: Swampland Overview

• Consistency is the key to the 
Swampland program

• Frame conjectures in terms of 
criteria that low energy QFTs 
must satisfy to reside in the 
Landscape

• Apply this philosophy to the 
study of QM potentials

Palti [1903.06239]
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The Quantum Mechanics Swampland

• The Landscape consists of all quantum mechanical potentials that can be 
derived from well-defined tree-level QFTs. A potential resides in the 
Swampland if it is singular.

• Diagnostic: If the first Born approximation diverges for any combination of 
incoming and outgoing states, then the potential is singular.

• As an example, we’ll evaluate the pseudoscalar potential and the four-
fermion version of it.

24

Kℓs,ℓ′￼s′￼
∝ ∫

a

0
drsℓ′￼

(kr)Vℓs,ℓ′￼s′￼
(r)sℓ(kr) ≈ ∫

a

0
dr(kr)ℓ′￼+1Vℓs,ℓ′￼s′￼

(r)(kr)ℓ+1
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Pseudoscalar Potentials

• Mediated by renormalizable operators, we get

•

• Diagnostic check - the only singular term has a vanishing matrix element!

•

•

ℒint = iλϕψγ5ψ → V ⊃
3(S1 ⋅ ̂r)(S2 ⋅ ̂r) − S1 ⋅ S2

r3 (1 + mϕr +
m2

ϕr2

3 ) e−mϕr

m2
χ

Kℓs,ℓ′￼s′￼
⊃ ∫

a

0
drsℓ′￼

(kr)
Nℓ,ℓ′￼

r3
sℓ(kr) ≈ Nℓ,ℓ′￼∫

a

0
drrℓ+ℓ′￼−1

N0,0 = ⟨ℓ′￼ = 0 |3(S1 ⋅ ̂r)(S2 ⋅ ̂r) − S1 ⋅ S2 |ℓ = 0⟩ = 0
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Pseudoscalar Potentials

• Mediated by non-renormalizable operators, we get

•

• Diagnostic check

•

•

• Case I:                 Case II: 

ℒint =
λ

Λ2
ψ1γ5ψ1ψ2γ5ψ2 → V ⊃

λ
m1m2Λ2

( ⃗S1 ⋅ ⃗∇ )( ⃗S2 ⋅ ⃗∇ )δ3( ⃗r )

∫
a

0
drsℓ′￼(kr)( ⃗S1 ⋅ ⃗∇ )( ⃗S2 ⋅ ⃗∇ )δ3( ⃗r )sℓ(kr) ≈ Si

1S
j
2 ∫

a

0
dr∇i ∇j

δ(r)
r2

(kr)ℓ+1(kr)ℓ′￼+1

Si
1S

j
2 ∇i ∇jδ(r)rℓ+ℓ′￼ = δ(r)rℓ+ℓ′￼−2[(ℓ + ℓ′￼− 1)δij + (3 + (ℓ + ℓ′￼)(ℓ + ℓ′￼− 4)) ̂ri ̂rj]Si

1S
j
2

ℓ = ℓ′￼ = 0 →
3(S1 ⋅ ̂r)(S2 ⋅ ̂r) − S1 ⋅ S2

r2
δ(r) ℓ + ℓ′￼ = 1 → 0
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Extensions to Higher Dimensions

• Coulomb potentials in d spatial dimensions

• No operator structure! Problematic for d > 4?                     

• To compute the diagnostic, we need the free particle solutions in d spatial 
dimensions. Let’s turn to solving the free Schrödinger equation in d 
dimensions, which will give us these solutions.

V(r) =
α

rd−2

27
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Solving the Schrödinger Equation in Higher Dimensions

• Consider the free particle Schrödinger equation in d spatial dimensions

• The wavefunction is a product of a radial function and Gegenbauer polynomials. They 
are the higher dimensional generalization of the spherical harmonics.

• Change variables to cancel the first derivative:   

−
1

2μ
∇2

dΨ(r) = EΨ(r) ∇2
d = ∂2

r +
d − 1

r
∂r +

1
r2

Ω2

∂2
rR +

d − 1
r

∂rR −
ℓ(ℓ + d − 2)

r2
R = − k2R

u(r) = r(d−1)/2R(r)

∂2
ru + [k2 −

j( j + 1)
r2 ]u = 0 j = ℓ +

d − 3
2
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Higher Dimensional Coulomb Potentials

• Coulomb potentials in d spatial dimensions

• No operator structure! Problematic for d > 4?                     

• Free particle solutions in d spatial dimensions

• Diagnostic check

V(r) =
α

rd−2

sj(kr) = krjj(kr) cj = − kryj(kr) j = ℓ +
d − 3

2

Kjs,j′￼s′￼
=

−2μ
k ∫

a

0
drsj′￼

(kr)Vjs,j′￼s′￼
(r)sj(kr) ≈

−2αμ
k ∫

a

0
drrj′￼+1r2−dr j+1 ≈

−2αμ
k ∫

a

0
drrℓ′￼+ℓ+1
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Scalar-Scalar Potentials

• Scalars don’t possess any intrinsic spin. This allows us to uniquely fix the 
non-relativistic limit of the amplitude.

• Every factor of q gives us another derivative, so the potential is the sum of 
a Yukawa term and even derivatives of delta functions.

• Diagnostic check

30

Ṽ( ⃗q) =
f(q2)

q2 + m2
=

∞

∑
n=0

anq2n

q2 + m2
=

ã−1

q2 + m2
+

∞

∑
n=0

ãnq2n

∇2nδ(r)rℓ+ℓ′￼ = (ℓ + ℓ′￼)(ℓ + ℓ′￼− 1) ⋅ ⋅ ⋅ (ℓ + ℓ′￼+ 1 − 2n)δ(r)rℓ+ℓ′￼−2n


