New Searches for Composite DM

[arxiv:2408.03983](https://arxiv.org/abs/2408.03983)

with Javier F. Acevedo, Joseph Bramante, Christopher Cappiello, Gopolang Mohlabeng and Narayani Tyagi

Yilda Boukhtouchen

TeVPA Conference 2024 · Chicago IL August 27, 2024

can lead to A^4 scaling and multiscattering in DM experiments.

can lead to A^4 scaling and multiscattering in DM experiments.

could cause large numbers of low-energy scatters

There is a wide dark matter model landscape!

TeVPA 2024 **6** *August 27, 2024*

But first: why is heavy DM compelling?

$$
\frac{d\sigma_{Ad}}{dE_R} = \frac{d\sigma_{nd}}{dE_R} \left(\frac{\mu_{Ad}}{\mu_{nd}} \right)^2 A^2 |F_A(q)|^2
$$

Relatively unconstrained at higher crosssections due to its low flux.

For $m_d \gg m_A$: A^4 scaling in cross-section.

But first: why is heavy DM compelling?

$$
\frac{d\sigma_{Ad}}{dE_R} = \frac{d\sigma_{nd}}{dE_R} \left(\frac{\mu_{Ad}}{\mu_{nd}} \right)^2 A^2 |F_A(q)|^2
$$

Relatively unconstrained at higher crosssections due to its low flux.

For $m_d \gg m_A$: A^4 scaling in cross-section.

Multi-scattering in detector!

But first: why is heavy DM compelling?

DEAP Search for Multi-Scattering Events Multi-scattering in detector!

 -6^{-}

 $\overline{2}$

 $\overline{+0}$

 -2

 $log_{10}(N_{scatters})$

relic abundance is achieved through freeze-out mechanism as universe cools.

For context, WIMPs How is heavy DM produced in the early universe?

upper bound for $2 \rightarrow 2$ selfannihilation

$$
\sigma_{ann} \leq 4\pi/m_{\rm x}
$$

relic abundance is achieved through freeze-out mechanism as universe cools.

$$
\sigma_{ann} \le 4\pi/m_x \qquad m_x \le 10^5 \text{ GeV}
$$

Griest, Kamionkowski '90

There are many ways to get to higher masses!

How is heavy DM produced in the early universe? For context, WIMPs

TeVPA 2024 **12** *August 27, 2024*

Today's two recipes for composite assembly

"Nuclear" DM

 $R_d \sim \Lambda_D^{-1}$ *πd*

Dark, asymmetric fermions, charged under dark *SU*(*N*)

form "nucleons" at confinement scale Λ_D

attractive force due to dark pion: nucleons form nuclei

"Molecular" DM

Dark, asymmetric fermions, charged under dark *U*(1)

attractive force due to dark photon exchange *e.g. Krnjaic Sigurdson '14*

Regimes for DM-nucleus scattering

 $R^{}_D$ \sim *N*1/3 *D* Λ_D **Size**

Interconstituent Spacing [cm]

Parametrizing composites with $Λ_D$

 Λ_D^{-1} = interconstituent spacing *D*

Binding energy

 $BE(N_D)/N_D \sim \alpha \Lambda_D$

Regimes for DM-nucleus scattering

 $R^{}_D$ ∼ − *N*1/3 *D* Λ_D **Size**

Interconstituent Spacing [cm]

Parametrizing composites with $Λ_D$

 Λ_D^{-1} = interconstituent spacing *D*

Binding energy

 $BE(N_D)/N_D \sim \alpha \Lambda_D$

Pointlike regime

 $d\sigma_{AD} = \left(\mu_{AD}\right)^2$ $_{A^2N^2} d\sigma_{nd}$ $_{F^2(F)}$ *dER* ⁼ (*μAD* μ_{nd}) 2 $A^2 N_D^2$ *D dσnd dER* $F_A^2(E_R)$

$$
N_D = 10^4, \Lambda_D = 100 \text{ GeV}
$$

Pointlike regime: no multi-scattering

 $d\sigma_{AD} = \left(\mu_{AD}\right)^2$ $_{A^2N^2} d\sigma_{nd}$ $_{F^2(F)}$ *dER* ⁼ (*μAD* μ_{nd}) 2 $A^2 N_D^2$ *D dσnd dER* $F_A^2(E_R)$

 $N_D = 10^4$, $\Lambda_D = 100$ GeV

DM with form factor: doing better

 $d\sigma_{\!AD}$ *dER* ⁼ (*μAD* μ_{nd}) 2 $A^2 N_D^2$ $\frac{2}{D} \left(g^2 \right)^d$ *d* $\frac{d \sigma_{nd}}{d F}$ *dER* $F_A^2(E_R)F_D^2(E_R)$

$$
N_D = 10^4, \Lambda_D = 10
$$
 MeV

σmax

Let's look again at DEAP multiscatter search

What if composites interact with electrons?

DM-electron recoil could induce a recoil of the whole atom.

probability of electron remaining in same orbital

$$
\frac{d\sigma_{Ad}}{dE_R} = \sum_{n,l} \frac{d\sigma_{ed}}{dE_R} |f_{n,l}(q)|^2 |F_{\phi}(q)|^2
$$

DM-electron mediator form factor

Searching for Atomic Scattering in Liquid Argon

To conclude, composite DM…

has been a topic of interest for a long time.

can lead to A^4 scaling and multiscattering in DM experiments.

could cause large numbers of low-energy scatters

Backup Slides

Presentation Location **25** *Presentation date*

DEAP-3600 Search

TeVPA 2024 **26** *August 27, 2024*

^{2108.09405,} DEAP Collaboration

Sub-GeV DM detection landscape

$$
n_d\,=\,g_r^*\pi^2T_{ca}^3T_r/30\zeta\overline{m}_d
$$

Estimating N_D

When binding rate falls below the Hubble rate:

$$
\Gamma/H = \langle \sigma_{D_N} v_{D_N} \rangle n_{D_N}/H \sim 1 \longrightarrow N_D = \left(\frac{4\pi n_d v_d}{\Lambda_D^2 H}\right)^{6/5}
$$

With Friedmann eq. and estimate number density of DM at composite assembly

$$
3H^2 \bar{M}_{pl}^2\,\,=\,\,g^*_{ca}\pi T^4/30,
$$

Composite Binding Energy

$$
{\times}-a{S}N_{D}^{-1/3}-a_{C}N_{D}^{2/3}
$$

Rewrite coefficients in terms of Λ_D

Liquid drop model, like the SM:

 $\frac{{\rm BE}(N_D)}{N_D} \propto a_V$

$$
\frac{\mathrm{BE}(N_D)}{N_D} = a_V' \frac{\Lambda_D^3}{\left(m_{\pi_d}\right)^2} - a_S' \frac{\Lambda_D^4}{\left(m_{\pi_d}\right)^3} N_D^{-1/3} - a_c' \Lambda_D N_D^{2/3}
$$

 $a'_V \lesssim 0.1$ Rewrite coefficients in terms of Λ_D

DM-Atom Scattering

reference cross-section: The atomic form factor

$$
\sigma_{ed} = \frac{\mu_{ed}^2}{16\pi m_d^2 m_e^2} |\overline{{\cal M}}_{ed}(q)|^2 |_{q^2=\alpha^2 m_e^2}
$$

$$
\overline{|{\cal M}_{ed}(q)|^2} = \overline{|{\cal M}_{ed}(q)|^2}|_{q^2 = \alpha^2 m_e^2} \times |F_{\phi}(q)|^2
$$

$$
F_\phi(q)=\frac{\alpha^2 m_e^2+m_\phi^2}{q^2+m_\phi^2}
$$

 $\frac{d\sigma_{Ad}}{dE_R} = \sum_{n,l} \frac{d\sigma_{ed}}{dE_R} |f_{n,l}(q)|^2 |F_\phi(q)|^2 \, .$

$$
R_{n,l} = \sum_{j} S_{jl} C_{jln}
$$

Bunge Barrientos Vivier-Bu

sum of Slater-type orbitals

Bunge Barrientos Vivier-Bunge '93

Essig Mardon Volansky '12

Kopp Niro Schwetz Zupan '09

$$
f_{n,l}(q) = \sum_{m} \langle n l m | e^{i(\mathbf{k} - \mathbf{k}')\mathbf{x}} | n l m \rangle
$$

$$
= (2l+1) \int dr \, r^2 |R_{nl}|^2 \frac{\sin qr}{qr}
$$