New Searches for **Composite DM**

Yilda Boukhtouchen

arxiv:2408.03983

with Javier F. Acevedo, Joseph Bramante, Christopher Cappiello, Gopolang Mohlabeng and Narayani Tyagi

TeVPA Conference 2024 · Chicago IL

can lead to A^4 scaling and multiscattering in DM experiments.

could cause large numbers of low-energy scatters

can lead to A^4 scaling and multiscattering in DM experiments.

There is a wide dark matter model landscape!

TeVPA 2024

But first: why is heavy DM compelling?

Relatively unconstrained at higher crosssections due to its low flux.

For $m_d \gg m_A$: A^4 scaling in cross-section.

$$\frac{d\sigma_{Ad}}{dE_R} = \frac{d\sigma_{nd}}{dE_R} \left(\frac{\mu_{Ad}}{\mu_{nd}}\right)^2 A^2 |F_A(q)|^2$$

But first: why is heavy DM compelling?

Relatively unconstrained at higher crosssections due to its low flux.

For $m_d \gg m_A$: A^4 scaling in cross-section.

$$\frac{d\sigma_{Ad}}{dE_R} = \frac{d\sigma_{nd}}{dE_R} \left(\frac{\mu_{Ad}}{\mu_{nd}}\right)^2 A^2 |F_A(q)|^2$$

Multi-scattering in detector!

But first: why is heavy DM compelling?

DEAP Search for Multi-Scattering Events

-6

2

-0

-2

Multi-scattering in detector!

 $log_{10}(N_{scatters})$

How is heavy DM produced in the early universe? For context, WIMPs

relic abundance is achieved through freeze-out mechanism as universe cools.

GeV

How is heavy DM produced in the early universe? For context, WIMPs

relic abundance is achieved through freeze-out mechanism as universe cools.

$$\sigma_{ann} \leq 4\pi/m_x$$

$$m_x \le 10^5 \text{ GeV}$$

Griest, Kamionkowski '90

 10^{5}

There are many ways to get to higher masses!

TeVPA 2024

Today's two recipes for composite assembly

"Nuclear" DM

Dark, asymmetric fermions, charged under dark SU(N)

form "nucleons" at confinement scale Λ_D

 $R_d \sim \Lambda_D^{-1}$

e.g. Krnjaic Sigurdson '14

attractive force due to dark pion: nucleons form nuclei

"Molecular" DM

Dark, asymmetric fermions, charged under dark U(1)

attractive force due to dark photon exchange

Parametrizing composites with Λ_D

 Λ_D^{-1} = interconstituent spacing

Binding energy

 $BE(N_D)/N_D \sim \alpha \Lambda_D$

Size $K_D \sim -$

Interconstituent Spacing [cm]

Regimes for DM-nucleus scattering

Parametrizing composites with Λ_D

 Λ_D^{-1} = interconstituent spacing

Binding energy

 $BE(N_D)/N_D \sim \alpha \Lambda_D$

Size $K_D \sim -$

Interconstituent Spacing [cm]

Regimes for DM-nucleus scattering

Pointlike regime

 $\left(\frac{\mu_{AD}}{\mu_{nd}}\right)^2 A^2 N_D^2 \frac{d\sigma_{nd}}{dE_R} F_A^2(E_R)$ $\frac{d\sigma_{AD}}{dE_R} =$

TeVPA 2024

$N_D = 10^4, \Lambda_D = 100 \text{ GeV}$

Pointlike regime: no multi-scattering

 $\frac{d\sigma_{AD}}{dE_R} = \left(\frac{\mu_{AD}}{\mu_{nd}}\right)^2 A^2 N_D^2 \frac{d\sigma_{nd}}{dE_R} F_A^2(E_R)$

TeVPA 2024

 $N_D = 10^4, \Lambda_D = 100 \text{ GeV}$

DM with form factor: doing better

 $\frac{d\sigma_{AD}}{dE_R} = \left(\frac{\mu_{AD}}{\mu_{nd}}\right)^2 A^2 N_D^2 g^2 \frac{d\sigma_{nd}}{dE_R} F_A^2(E_R) F_D^2(E_R)$

 σ_{max} *TeVPA 2024*

$$N_D = 10^4, \Lambda_D = 10 \text{ MeV}$$

Let's look again at DEAP multiscatter search

Incoherent scattering

What if composites interact with electrons?

probability of electron remaining in same orbital

$$\frac{d\sigma_{Ad}}{dE_R} = \sum_{n,l} \frac{d\sigma_{ed}}{dE_R} |f_{n,l}(q)|^2 |F_{\phi}(q)|^2$$

DM-electron mediator form factor

DM-electron recoil could induce a recoil of the whole atom.

Searching for Atomic Scattering in Liquid Argon

To conclude, composite DM...

has been a topic of interest for a long time.

can lead to A^4 scaling and multiscattering in DM experiments.

could cause large numbers of low-energy scatters

Backup Slides

Presentation Location

25

Presentation date

DEAP-3600 Search

TeVPA 2024

^{2108.09405,} DEAP Collaboration

Sub-GeV DM detection landscape

Estimating N_{D}

When binding rate falls below the Hubble rate:

$\Gamma/H = \langle \sigma_{D_N} v_{D_N} \rangle n_{D_N}/H$

With Friedmann eq. and estimate number density of DM at composite assembly

$$3H^2 M_{pl}^2 = g_{ca}^* \pi T^4 / 30,$$

$$\sim 1$$
 \longrightarrow $N_D = \left(\frac{4\pi n_d v_d}{\Lambda_D^2 H}\right)^{6/5}$

$$n_d = g_r^* \pi^2 T_{ca}^3 T_r / 30 \zeta \overline{m}_d$$

Composite Binding Energy

Liquid drop model, like the SM:

 $\frac{\mathrm{BE}(N_D)}{N_D} \propto a_V$

$$\frac{\text{BE}(N_D)}{N_D} = a'_V \frac{\Lambda_D^3}{(m_{\pi_d})^2} - a'_S \frac{\Lambda_D^4}{(m_{\pi_d})^3} N_D^{-1/3} - a'_c \Lambda_D N_D^{2/3}$$

Rewrite coefficients in terms of Λ_D $\frac{\mathrm{BE}(N_D)}{N_D} \approx a'_V \Lambda_D \qquad a'_V \lesssim 0.1$

$$v - a_S N_D^{-1/3} - a_C N_D^{2/3}$$

Rewrite coefficients in terms of Λ_D

DM-Atom Scattering

reference cross-section:

$$\sigma_{ed} = \frac{\mu_{ed}^2}{16\pi m_d^2 m_e^2} \overline{|\mathcal{M}_{ed}(q)|^2}|_{q^2 = \alpha^2 m_e^2}$$

$$\overline{|\mathcal{M}_{ed}(q)|^2} = \overline{|\mathcal{M}_{ed}(q)|^2}|_{q^2 = \alpha^2 m_e^2} \times |F_{\phi}(q)|^2$$

$$F_{\phi}(q) = rac{lpha^2 m_e^2 + m_{\phi}^2}{q^2 + m_{\phi}^2}$$

Essig Mardon Volansky '12

 $\frac{d\sigma_{Ad}}{dE_R} = \sum_{n,l} \frac{d\sigma_{ed}}{dE_R} |f_{n,l}(q)|^2 |F_{\phi}(q)|^2$

Atomic form factor

Kopp Niro Schwetz Zupan '09

$$f_{n,l}(q) = \sum_{m} \langle nlm | e^{i(\mathbf{k} - \mathbf{k}')\mathbf{x}} | nlm \rangle$$
$$= (2l+1) \int dr r^2 |R_{nl}|^2 \frac{\sin qr}{qr}$$

$$R_{n,l} = \sum_{j} S_{jl} C_{jln}$$

Bunge Barrientos Vivier-Be

sum of Slater-type orbitals

Runge '93

