Searching for Dark Matter in the Alps with DAMIC-M Sravan Munagavalasa DAMIC-M Collaboration

DAMIC-M **DArk MAtter In CCDs at Modane**

Dark Matter Charge-Coupled Devices Modane, France

Laboratoire Souterrain de Modane (LSM)

DM

12 868 m

DAMIC-M DAMIC-M In a Nutshell

- 1 kg-year of Target Exposure
- background rate of ~0.1 dru
- detect nuclear and electron recoils to search for light dark matter candidates
- scheduled for installation at LSM end of 2024

1 dru [differential rate unit] = 1 background event/keV/kg/day

DAMIC-M Background Mitigation

18-ton shielding in shipping container to transport wafers from Europe to Canada (and back as CCDs)

• Copper: Electroform copper machined underground **MAJORANA** copper at SURF Shipped to LSM in shielded container

• Silicon: cosmic rays exposure < 2 months to achieve background goal. We have implemented strict shielding protocols for all transports/storage of silicon

Europe -> Canada -> California -> Canada -> Washington->Modane

DAMIC-M Dark Matter Candidates

Charge-Coupled Device Operation

- Expose
- Vertical shift down one pixel
 - Horizontal shift one pixel
 - Readout pixel

Conventional Readout Limitation:

 $\sigma_{rms} \approx 3 e^{-1}$

Charge-Coupled Device Skipper Readout Stage

- Implement a floating readout stage
- Allows for Non-Destructive Charge Measurements (NDCM)
- Reduce Statistical Noise by

Charge-Coupled Device Sub-Electron Noise Resolution

DANIC-M Projected Sensitivity

- Design: Low Background
- Silicon: Low Ionization Threshold
- Skipper: Low Readout Noise

Low Background Chamber Main Objectives

- CCD test in low background environment
- Validation of DAMIC-M readout electronics
- Test bench for data collection strategies

Low Background Chamber (LBC) Main Objectives

- CCD test in low background environment
- Validation of DAMIC-M readout electronics
- Test bench for data collection strategies
- Science Runs

Low Background Chamber **First Science Run**

- 85.2 gram-days total (after masking)
- Background rate 12.5 dru
- Resolution 0.2e-
- Dark current 4.5E-3 e-/ pixel/day

Partial CCD image

DM-e Scattering Analysis Log Likelihood minimization

$$\overline{\sigma}_{g}=2 \times 10^{37} \text{ cm}^{2}$$

$$\sigma_{res}) = \sum_{i=0}^{N_{pix}} N_{im} \sum_{n_{q}=0}^{\infty} \left[\sum_{j=0}^{n_{q}} S(j|m_{\chi}, \bar{\sigma}_{e}, e_{i}) \text{Pois}(n_{q} - j|\lambda_{i} - \lambda_{S,i}) \right] \text{Gaus}(p|n_{\chi}, \bar{\sigma}_{e}, e_{i}) \text{Pois}(n_{q} - j|\lambda_{i} - \lambda_{S,i}) = \frac{1}{4} \sum_{j=0}^{1} \frac{1}{4} \sum_{j=0}^{n_{q}} \frac{1}{4$$

Editors' Suggestion

DM-e Scattering Analysis

Search for Daily Modulations

Future of LBC

- Installation of new CCD Modules
- Installation Installation of low noise **DAMIC-M** electronics with custom design and Firmware
- We continue to commission CCDs to reduce the readout noise and dark current
- We have achieved a background rate of 6.7 dru

New Paper on LBC prepared for JINST arXiv:2407.17872

Progress on DAMIC-M University of Washington, Seattle

- CCDs shipped from SNOLAB to UW for wirebonding to CCD Pitch Adapter for DAMIC-M
- Stored Underground at UW with custom Nitrogen gas plumbing

Commissioning of CCDs for DAMIC-M University of Washington, Seattle

- 2 separate test chambers have been commissioned at UW for the testing and characterization
- Only CCDs that pass our criteria will be used in DAMIC-M

Installation of DAMIC-M by the end of the year

The DAMIC-M Collaboration

