

AUGER

OBSERVATORY

Anisotropy studies of the arrival directions of cosmic rays at the highest energies with the Pierre Auger Observatory

TeVPA - Chicago, 26-30 August 2024

João de Mello Neto^a for the Pierre Auger Collaboration^b

^a Federal University of Rio de Janeiro - Brazil ^b Observatorio Pierre Auger, Malargüe, Argentina

Other talks from the Pierre Auger Observatory

Observatory Fiona Ellwanger (Karlsruhe Institue of Technology)

Mass Composition Interpretation with the Pierre Auger Observatory Miguel Alexandre Martins (Instituto Galego de Física de Altas Enerxias)

AugerPrime - the new Phase of the measurements at the Pierre Auger Observatory Nataliia Borodai (Institute of Nuclear Physics, Polish Academy of Sciences)

The energy spectrum of ultra-high energy cosmic rays measured using the Pierre Auger

The search for UHECR sources

- \star Cosmic rays: observed at energies of more than $10^{20} \, eV$
- * Most energetic particles known in the universe
 - * Search for sources is challenging: charged particles deflected by magnetic fields * Magnetic fields: difficult to study and their modeling is far from being complete

 - * Above a few tens of EeV: **deflections small enough**, directional information for small charges can be preserved
 - * The cosmological volume within which UHECRs sources should be sought is limited * CR interact with photon backgrounds, mean free path for energy losses depends on
 - their mass and energies
 - * At 100 EeV, protons and iron: 200-300 Mpc, intermediate nuclei He, N: 3-6 Mpc * Sources of UHECRs must be in the **local universe**!

Two approaches to search for anisotropies

Small-intermediate scale anisotropies can be present in the suppression region

At UHE, cosmic rays have reduced horizon and maybe enough rigidity to point back to their sources

Method: Comparison of UHECR arrival directions with catalogues of astronomical objects

Challenge: control of exposure and trial factor (energy, angle...)

Large scale anisotropies can be present at all energies

- *** Propagation** from **extragalactic sources** distributed anisotropically
- *** Diffusion** from individual extragalactic sources
- *** Diffusive escape** from Galaxy of CRs from galactic sources
- **Compton-Getting** effect due to the Earth motion in the CR rest frame
- **Method**: Rayleigh analysis in right ascension (and azimuth)
- **Challenge**: control exposure and event rate down below < % level

2MASS Survey, Astrophys. J., 2011

Pierre Auger Collab., Science, 2017

*Water-Che *From Jan. 2 *2021-2022 only those	e Pierre Auge erenkov surface detecte 2004 to Dec. 2022. (AugerPrime installation detectors in which the 1.6 yr of exposure).	dataset	HEAT Coihueco SD-750 Los Morado		
	E	$ heta_{ m max}$	Exposure	Increase	Los Leones
	$[{ m EeV}]$	[°]	$\left[\mathrm{km}^{2}\mathrm{yrsr} ight]$	[%]	
SD1500	> 32	80	135,000	11 ¹	- 85% coverage of the sky
	>4	80	123,000	11^2	
	0.25 < E < 4	60	81,000	40^3	
SD750	> 0.03	55	337	33 ³	- 71% coverage of the sky

Previous results: ¹ Astrophys. J. 935 (2022) 170, ² PoS(ICRC2021)335, ³ Astrophys. J. 891 (2020) 142

Anisotropy studies E > 32 EeV

- * Scan in E_{th} in [32, 80] EeV, steps of I EeV and in top-hat search angle Ψ in [1°, 30°], steps of 1° (for the Centaurus region 0.25° steps between 1° and 5°).

Analysis	Eth [EeV]	Ψ[°]	Nobs	N _{exp}
Overdensity	38	27	245	172.0
Cen A	38	27	237	169.0

* Binomial probability to measure N_{obs} , inside a circular window, compared to N_{exp} from isotropic simulations.

Pierre Auger Collab., 38th ICRC, 2023

Catalog-based searches E > 32 EeV

- their different distances (Auger spectral-composition modeling) Pierre Auger Collab, JCAP, 2017
- * Catalogs (and their flux proxy):

"all galaxies (IR)" from 2MRS (K-band) "starbursts (radio)" based on Lunardini+19 (1.4 GHz) "all AGNs (X-rays)" from Swift-BAT (14-195 keV) "jetted AGNs (γ-rays)" from Fermi 3FLHE (E>10 GeV)

Catalog	Eth [EeV]	Ψ[°]	α [%]	TS	Post-trial <i>p</i> -value
All galaxies (IR)	38	24^{+15}_{-8}	14^{+8}_{-6}	18.5	$6.3 \times 10^{-4} \rightarrow 3.20$
Starbursts (radio)	38	25^{+13}_{-7}	9^{+7}_{-4}	23.4	$6.6 \times 10^{-5} \longrightarrow 3.80$
All AGNs (X-rays)	38	25_{-7}^{+12}	7^{+4}_{-3}	20.5	$2.5 \times 10^{-4} \rightarrow 3.50$
Jetted AGNs (γ -rays)	38	23_{-7}^{+8}	6^{+3}_{-3}	19.2	$4.6 \times 10^{-4} \rightarrow 3.30$

All excesses happen at the same Eth and at the same angular scale

* Probability maps built weighting objects by their relative flux in the corresponding e.m. band and an attenuation due to

* Parameters: Fisher search radius Θ (ψ = 1.59 Θ) and the signal fraction α . Scan in E_{th} in [32, 80] EeV, steps of 1 EeV.

Pierre Auger Collab., ApJL, 2018 Pierre Auger Collab., 38th ICRC, 2023

Evolution of the signal

Considering the best-fit parameters of the Centaurus region search Year 2006 2008 **201**4 2016 2010 2012 30 - Starburst galaxies (radio) - E_{th} = 38 EeV - Centaurus region - E_{th} = 38 EeV $oldsymbol{\mu}_{\mathrm{th}}$ 25 ۸I 20 Cumulated TS 15 10 20 40 60 80 Pierre Auger Obs. exposure \ge 32 EeV [10³ km² yr sr]

Compatible with linear growth within the expected variance

5 sigma deviation from isotropy at 2025 ± 2 years

Pierre Auger Collab., 38th ICRC, 2023

Regions of Telescope Array excesses with Auger data

Regions of Telescope Array excesses with Auger data

The excesses reported by TA in the windows a and b, as of their latest update and the corresponding results in our data **Telescope Array Collab., 38th ICRC, 2023**

Correcting the energy thresholds for the known mismatch between the energy scales of the two observatories Pierre Auger Collab. Telescope Array Collab, 38th ICRC, 2023

	Telesc	cope A	Array (T	elesco	pe A	rray Colla	boratio	n 202	3)]	Pierre	Auger	Obser	vator	ry (this wo	ork)	
	E_{\min}	$N_{ m tot}$	$rac{{\mathcal{E}_{ ext{in}}}}{{\mathcal{E}_{ ext{tot}}}}$	$N_{ m bg}$	$N_{ m in}$	$rac{\Phi_{ ext{in}}}{\Phi_{ ext{out}}}$	$Z_{ m LM}$	99%L.L.	post- trial	E_{\min}	$N_{ m tot}$	$rac{{\mathcal E}_{ ext{in}}}{{\mathcal E}_{ ext{tot}}}$	$N_{ m bg}$	$N_{ m in}$	$rac{\Phi_{ ext{in}}}{\Phi_{ ext{out}}}$	$Z_{ m LM}$	99 U.
(a)	$57 { m EeV}$	216	9.47%	18.0	44	$2.44_{-0.39}^{+0.44}$	$+4.8\sigma$	1.60	2.8σ	44.6 EeV	1074	1.00%	10.7	9	$0.84^{+0.31}_{-0.25}$	-0.5σ	1.'
(b1)	$10^{19.4}{\rm eV}$	1125	5.88%	64.0	101	$1.58\substack{+0.17 \\ -0.16}$	$+4.1\sigma$	1.22	3.3σ	$20.5 \mathrm{EeV}$	8374	0.84%	70.1	65	$0.93\substack{+0.12 \\ -0.11}$	-0.6σ	1.2
(b2)	$10^{19.5}{\rm eV}$	728	5.87%	41.1	70	$1.70\substack{+0.22 \\ -0.20}$	$+4.0\sigma$	1.25	3.2σ	$25.5 \mathrm{EeV}$	5156	0.84%	43.5	39	$0.90\substack{+0.15 \\ -0.14}$	-0.7σ	1.2
(b3)	$10^{19.6} \mathrm{eV}$	441	5.84%	24.6	45	$1.83^{+0.31}_{-0.27}$	$+3.6\sigma$	1.23	3.0σ	31.7 EeV	2990	0.87%	26.0	27	$1.04\substack{+0.21 \\ -0.19}$	$+0.2\sigma$	1.(

We actually obtain always $-0.7\sigma \leq Z_{LM} < +0.2\sigma$, in excellent agreement with the isotropic null hypothesis.

Pierre Auger Collab,, arXiv 2407.06874

Regions of Telescope Array excesses with Auger data

We computed the distribution of the number N_{in} of eve (i) isotropy $(\Phi_{in}/\Phi_{out} = 1)$,

(ii) the TA value of Φ_{in}/Φ_{out} that can be computed from their numbers of events N_{in}, N_{tot} as reported in their last update Telescope Array Collab., 38th ICRC, 2023

(iii) the marginal distribution of Φ_{in}/Φ_{out} over TA statistical uncertainties.

We computed the distribution of the number N_{in} of events in our dataset expected in each of these windows based on

Pierre Auger Collab,, arXiv 2407.06874

Large scale: weighted harmonic analysis E>4 EeV

- Search for harmonic modulation in right ascension and azimuth: \star
- **★** Fourier coefficients of order k (1 or 2)
- * Amplitude, $r_k^x = \sqrt{(a_k^x)^2 + (b_k^x)^2}$, phase $\varphi_k^x = \frac{1}{k} \tan^{-1} \frac{b_k^x}{a_k^x}$

* Weights: small variations in coverage and tilt of the array $w_i = \left[\Delta N_{cell}ig(lpha_i^0ig)(1+0.003 an heta_i\cos(\phi_i-\phi_0)ig)
ight]^{-1}$

number of active detector cells

right ascension of the zenith of the observatory

Dipolar modulation:

$$d_{\perp} \simeq rac{r_1^lpha}{\langle \cos \delta
angle} = d_z$$

Harmonic analysis above 4 EeV

E [EeV]	N	d_{\perp}	d_z	
4-8	118,835	$0.010^{+0.006}_{-0.004}$	-0.014 ± 0.008	0.0
≥ 8	49,710	$0.058^{+0.009}_{-0.008}$	-0.045 ± 0.012	0.07
8-16	36,683	$0.057^{+0.010}_{-0.009}$	-0.030 ± 0.014	0.06
16-32	10,288	$0.059^{+0.020}_{-0.015}$	-0.07 ± 0.03	0.09
≥32	2,739	$0.11^{+0.04}_{-0.03}$	-0.13 ± 0.05	0.1

Large-scale analysis E>4 EeV: dipole + quadrupole

Results for the two energy bins with more than 5σ significance

E [EeV]	d_i	
≥ 8	$d_x = -0.002 \pm 0.011$	Q_{zz}
	$d_y = 0.059 \pm 0.011$	Q_{xx} – Q_{xx}
	$d_z = -0.02 \pm 0.03$	Q_{xy} =
8-16	$d_x = -0.002 \pm 0.012$	Q_{zz}
	$d_y = 0.049 \pm 0.012$	Q_{xx} – Q_{xx}
	$d_z = 0.02 \pm 0.04$	Q_{xy} =

Quadrupolar component not significant

Dipolar amplitudes consistent with dipole only results

 Q_{ij} Q_{ij} $h = 0.04 \pm 0.05$ $Q_{xz} = 0.016 \pm 0.025$ $Q_{yy} = 0.07 \pm 0.04$ $Q_{vz} = 0.005 \pm 0.025$ $= 0.024 \pm 0.019$ $h = 0.10 \pm 0.06$ $Q_{xz} = 0.001 \pm 0.029$ $Q_{yy} = 0.03 \pm 0.04$ $Q_{yz} = -0.028 \pm 0.029$ $= 0.039 \pm 0.022$

Dipole reconstruction E> 4 EeV

E [EeV]	N	d_{\perp}	d_z	d	α_d [°]	$\delta_d [^\circ]$	$P(\geq d_{\perp})$
4-8	118,835	$0.010^{+0.006}_{-0.004}$	-0.014 ± 0.008	$0.017^{+0.008}_{-0.005}$	91 ± 30	-53^{+21}_{10}	0.15
≥ 8	49,710	$0.058^{+0.009}_{-0.008}$	-0.045 ± 0.012	$0.073^{+0.010}_{-0.008}$	97 ± 8	-37^{+9}_{-9}	7.4×10^{-12}
8-16	36,683	$0.057^{+0.010}_{-0.009}$	-0.030 ± 0.014	$0.065^{+0.012}_{-0.009}$	92 ± 10	-28^{+11}_{-12}	1.2×10^{-8}
16-32	10,288	$0.059^{+0.020}_{-0.015}$	-0.07 ± 0.03	$0.094^{+0.026}_{-0.019}$	93 ± 18	-51^{+13}_{-13}	4.5×10^{-3}
≥32	2,739	$0.11^{+0.04}_{-0.03}$	-0.13 ± 0.05	$0.17^{+0.05}_{-0.04}$	143 ± 19	-51^{+14}_{-13}	8.4×10^{-3}

suposing a pure dipolar distribution

E > 8 EeV: dipole amplitude: $7.3^{+1.1}_{-0.9}\,\%$

Dipole directions in galactic scenario

-180

15/19

(energy-independent fit disfavored above 5σ)

No clear trend in the evolution of

Dipole interpretation

180

Models with mixed composition, R_{max} = 6 EV, source density 10-4 Mpc-3

Consistent with expectations

Harari, Molerach, Roulet, PRD, 2014)

Extragalactic dipole direction gets shifted towards spiral arms **Possibly due to the larger relative contribution** from nearby sources to the flux at higher energies 17/19

Extragalactic Dipole and GMF

Large-scale analysis in R.A. at E > 0.03 EeV

Even though the results for the lower E have a P>1%, amplitudes grow from below 1% to above 10% and phases shift from ~GC to the opposite direction.

 \Rightarrow suggests a transition of the origin of the anisotropies from galactic to extragalactic

- * Highest energies: Centaurus region at 4.0 σ (3.0 x 10⁻⁵), could reach 5.0 σ by (165 ± 15) x 10³ km²sr yr. SBG catalog at 3.8 σ (6.6 x 10⁻⁵).
- * TA excesses: with comparable statistics, no significant results have been found.
- Dipole: >8 EeV at 6.9 σ and 8-16 EeV at 5.7 σ . Quadrupolar moments not significant. \star
- * Large-scale analysis above 0.03 EeV: results suggest that the anisotropy has a predominant galactic origin below I EeV and a predominant extragalactic one above few EeV.
- * Promising inclusion of mass composition estimators on an event-by-event basis with AugerPrime (and improved mass estimators with Phase data)

Conclusions and prospects

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro

Backup slides

Catalog-based searches E > 32 EeV

Analysis strategy

Sky model probability maps:

 $n^{H_0}(\mathbf{u}) = \overline{\Sigma}$ Null hypothesis H₀: **isotropy** $n^{H_1}(\mathbf{u}) = (1$ Single population **signal** model H_1 : (free paramet

Contribution to the UHECR flux from each galaxy: Modeled as a von Mises-Fisher distribution centered on the direction of the galaxy with a smearing angle Θ Test statistics: $TS = 2\log(H_1/H_0)$ $TS = 2\sum$

$$egin{aligned} & \omega(\mathbf{u}) \ \hline \sum_i \omega(\mathbf{u}_i) \ & 1-lpha) imes n^{H_0}(\mathbf{u}) + lpha imes rac{\sum_j s_j(\mathbf{u}; \Theta)}{\sum_i \sum_j s_j(\mathbf{u}_i; \Theta)} \ & ext{ters: } lpha ext{ and } \Theta) \end{aligned}$$

$$s_j(\mathbf{u}; \Theta) = \omega(\mathbf{u}) imes \phi_j a(d_j) imes \expigg(rac{\mathbf{u} \cdot \mathbf{u}_j}{2(1-\cos \Theta)}igg)$$

$$k_i imes \ln rac{n^{H_1}(\mathbf{u}_i)}{n^{H_0}(\mathbf{u}_i)}$$

Highest energies: blind searches for overdensities

Search for excesses not specifying a priori the targeted regions of the sky

- ***** Li-Ma: compare cumulative number of events (Nobs) given the expected on average from isotropic simulations (Nexp)
- * Scan in **energy** threshold in [32; 80] EeV, step of I EeV
- * Scan in top-hat search **angle** Ψ in [1°; 30°], steps of 1°

Most significant local excess over whole observable sky

- ★ Eth ≥ 41 EeV, Ψ = 24°
- * $(\alpha, \delta) = (196.30, -46.6^{\circ}), (I, b) = (305.4^{\circ}, 16.2^{\circ})$
- * Local p-value 3.7×10^{-8} , Li&Ma significance = 5.4σ

*** Global** *p***-value = 3%** (after accounting the scan, penalty factor $\sim O(10^5)$)

The dataset above 32 EeV is available for public use

* with the code to reproduce the results (link)

P. Auger Collab, ApJ, 2022

Pierre Auger Observatory: state-of-the art cosmic ray detector

Salin

- * SD1500: 1600, 1.5 km grid, 3000 km²
- 61, 0.75 km grid, 23.5 km² * SD750:
- *** Live time ~ 100%**

***4 Fluorescence sites**

- * 24 telescopes, I-30^o FOV
- * 3 high elevation FD 30°-60° FOV

\star Live time $\sim 13\%$

- *** Underground Muon Detectors**
 - **★**7 in engineering array phase
 - \star 61 aside the Infill stations

*** AERA radio antennas**

***153** antenas in 17 km²