

Heavy Dark Matter Annihilation Search Towards Dwarf Galaxies with the IceCube Neutrino Observatory.

Daniel N. Salazar-Gallegos salaza82@msu.edu

Michigan State University TeVPA 2024

The Dark Matter Basics

What we know from astrophysical observations

ABUNDANT

- 5x more than normal (baryonic) matter
- Accounts for ~27% of the universe's energy

DARK

- Does not interact with the electromagnetic force (aka light)
- Tight limits on other Standard Model forces

OLD

 Plays a massive role in the shape and evolution of our universe and galaxy.

Indirect Detection of Annihilating Dark Matter

Likelihood fit over the simplified equation:

$$A \times \frac{dN_{\nu}}{dE_{\nu}} (M_{\chi}, E_{\nu}, SM_{chan})$$

Particle Physics Component Neutrinos Oscillate!

Neutrinos have been observed to oscillate between their flavor states!

A neutrino spectrum at Earth will be different than it was at the source of production Mass = 100.0 TeV; Ann. channel = $v_{\mu}v_{\mu}$

Dark Matter with Neutrino Flavors

Current DM annihilation modelling with neutrino oscillations predict unique $v_{\mu} + v_{\tau}$ fluxes from the different flavor initial states

This will be the first IceCube DM dSph analysis that can **distinguish the flavor of the primary neutrinos from DM annihilation.**

Standard DM Search; Dwarf Spheroidals

(left) Fornax Dwarf Spheroidal Galaxy (dSph)

'Small' clustering of matter and stars within our galactic neighborhood

dSphs are DM dominated.

Very little astrophysical ν background or obstructive dust

Ideal sources for astrophysical Dark Matter searches

ESO/Digitized Sky Survey 2 Daniel Salazar-Gallegos

Astrophysical Component

				1
			/	
	•			
Leo			Algieba	
Zos	sma			
	· · ·	Vesta LEO	Seg	ue 1
	·			1.
a ser transformation and the			Le	0
			•	Regulus
Denebola				

Leo constellation with location of 3 dSph's marked

Source	Jfactor	- RA	Dec 📮
UrsaMinor	8.83487E+2	18 227.2	4 67.24
UrsaMajorII	2.65522E+2	19 132.7	7 63.11
Draco	1.12772E+2	19 260.0	6 57.07
UrsaMajorl	7.45933E+2	17 158.7	2 51.94
CanesVenaticil	II 4.47301E+2	17 194.2	9 34.32
CanesVenaticil	2.73023E+2	17 202.0	1 33.56
ComaBerenice	s 1.05657E+2	19 186.7	4 23.9
Leoll	9.31108E+2	17 168.3	4 22.13
Segue2	1.61585E+2	16 34.8	1 20.17
LeoT	1.28825E+2	17 143.7	2 17.05
Segue1	2.26725E+2	19 151.7	5 16.06
BootesI	1.72028E+2	18 210.0	3 14.49
Hercules	7.32656E+2	16 247.7	2 12.75
Leol	6.94225E+2	17 152.1	1 12.29
LeoV	2.34315E+2	16 172.7	9 2.22
LeolV	2.10475E+2	16 173.3	2 -0.53
Sextans	8.32339E+2	17 153.2	8 -1.59
Sculptor	3.75405E+2	18 15.0	4 -33.7
Carina	8.26418E+2	17 100.4	1 -50.96

Catalog Used for this study. Source: Geringer-Sameth 2015

8

IceCube Neutrino Observatory

IceCube has km long strings with digital optical modules (DOM)

 Average vertical separation of DOM is 17m

Neutrinos interacts with ice and creates charged particle tracks/cascade that we later detect from Cherenkov light.

Shown right is a muon track from v_{μ} collision in ice.

 v_e will usually produce 'cascades' instead of tracks in the detector

14

90% C.L. Per dSph and Combined

We're sensitive to PeV scale DM with IceCube

90% C.L. Per dSph and Combined 10^{-14} IceCube 10^{-16} Prelim $\begin{bmatrix} -18 \\ -18 \end{bmatrix}$ Ś [cm³ \$ 10-20 $\chi \chi \rightarrow \nu_{\mu} \overline{\nu_{\mu}}$ 10^{-22} UrsaMajorl Bootesl Draco LeoV LeoT UrsaMajorII Hercules anesVenatic 10^{-24} Leoll Combined ComaBerenice Seque2 100 10¹ 10^{2} 10^{3} 10^{4} 10 M_{γ} [TeV]

This IceCube muon track study independently sensitive to ~5 orders of magnitude in DM mass

16

Sensitivities Compared

IceCube Conlusions

 $\chi \chi \rightarrow \nu_{\mu} \overline{\nu_{\mu}}$ shows the most competitive sensitivity for $\langle \sigma v \rangle$ with O(10⁻²³) after stacking 15 source.

We've gained a substantial amount of sensitivity to DM annihilation from dwarf galaxies!

IceCube is competitive at the highest DM mass ranges.

IceCube has comparable sensitivity to past gamma-ray studies for charged lepton channels in the heavy DM regions

Expect to unblind and analyze data this year

18

Backup

Sensitivities Compared

Daniel Salazar-Gallegos

20

Sources w.r.t Data

Declination Sensitivity Studies 1/2

Declination Sensitivity Studies 2/2

You can really see the impact of the earth on this one.

Have not included tau contamination in these sensitivities yet.

However, that would add counts which would push these sensitivities down

$$L(n_s) = \prod_{i=1}^{N_{\text{sources}}} L_i(n_s)$$

Daniel Salazar-Gallegos

ANT -

24