Giant planet airglow induced by dark matter annihilation

Marianne Moore

2408.15318

with Carlos Blanco, Rebecca Leane, and Joshua Tong

August 28, 2024

Guébec 🔹 🔹

Outline

Dark matter accumulation Ultraviolet airglow Dark matter-induced airglow

Results

Previous constraints

Summary

Dark matter accumulation in planets

$$\frac{\mathrm{d}N_{\chi}}{\mathrm{d}t} = \Gamma_{\mathrm{capture}} - N_{\chi}^2 \Gamma_{\mathrm{annihilation}}$$

Dark matter accumulation in planets

Marianne Moore (MIT)

Giant planet airglow induced by dark matter annihilation

Ultraviolet airglow

- The giant planets emit an isotropic airglow and auroras
- Mostly produced by electron precipitation
 - With contamination by solar radiation on dayside
- Focus on molecular hydrogen lines
 - Clear relationship observed flux ⇔ input electron power

aurora

$$\mathrm{H}_2^* \to \mathrm{H}_2 + \mathrm{h}\nu$$

Ultraviolet airglow

aurora

aurora

in the second

altelow

Ultraviolet airglow

1977-08-20

.....

aurora

in the second se

aurora

0.0km/s 4,487,373,409km Wikipedia

Marianne Moore (MIT)

Giant planet airglow induced by dark matter annihilation

7

all below

Dark matter-induced airglow

lf

dark matter annihilates to electrons

 $P_{\rm DM}^{\rm airglow} \le P_{\rm observed}^{\rm airglow}$

- dark matter annihilates to other final states
 - The limit is reduced by a factor of a few

Results: spin-independent

Results: spin-dependent proton

 Atmospheric cooling by H₃⁺ (2312.06758)

- Atmospheric cooling by H₃⁺ (2312.06758)
- Anomalous heating of the planetary interior (e.g. 0705.4298, 0808.2823, 1909.11683, 2210.01812)

- Atmospheric cooling by H₃⁺ (2312.06758)
- Anomalous heating of the planetary interior (e.g. 0705.4298, 0808.2823, 1909.11683, 2210.01812)
- Limits from the Galactic center

Summary

Signal

Our constraints

Data 1997-01-22 Voyager 2 Saturn Uranus Neptune

Competing constraints

Giant planet airglow induced by dark matter annihilation

Summary

UV airglow is a promising avenue to search for dark matter

Backup slides

UV airglow values

Planet	P _{observed} ^{airglow} (µW/m²)	Space probe
Jupiter	$0.31_{-0.15}^{+0.19}$	New Horizons
Saturn	<1	Voyager 1
Uranus	4.6	Voyager 2
Neptune	1.9 ± 0.3	Voyager 2

Results: spin-dependent neutron

Preliminary results: dark matter radial profile

Preliminary results: evaporation

Preliminary results: what about Earth?

Preliminary results: heavy mediator annihilation

Why not Lyman-alpha?

Non-negligible background on the nightside due to the interplanetary medium

Gladstone et al., GRL 2018