Baryogenesis Relics from Binary Pulsars to Terrestrial Experiments

Adrian Thompson (Northwestern U),

Mohammadreza Zakeri (U of Kentucky),

& Rouzbeh Allahverdi (U of New Mexico)

TeVPA 2024

TeV Particle Astrophysics University of Chicago August 29, 2024

Baryon number violating phenomenology

- Motivated by baryogenesis: Sakharov conditions
	- CP violation
	- Displacement from thermal equilibrium
	- **○ Baryon number violation (BNV)**
- *●* ~TeV scale effective operators
- *●* Describe low energy physics with **ChPT**
- **● Neutron stars and binary pulsar systems**
	- → rich environment to search for BNV!

A variety of probes:

Baryon $\rightarrow \psi \gamma$ and other Rare Decays

BNV in Neutron Stars

LHC Pheno: Monojets, Monotops, and dijets

Neutron-anti-neutron oscillations

…etc

 Alonso-Álvarez, Elor, Escudero, Fornal, Grinstein, Camalich [[2111.12712](https://arxiv.org/abs/2111.12712)] also: Davoudiasl, Morrissey, Sigurdson, Tulin [\[1106.4320](https://arxiv.org/abs/1106.4320)]

Berryman, Gardner, Zakeri [[2305.13377\]](https://arxiv.org/pdf/2305.13377) [[2311.13649](https://arxiv.org/pdf/2311.13649)] [\[2201.02637\]](https://arxiv.org/pdf/2201.02637)

Specific Model: A Majorana fermion + color-triplet scalar

 $\mathcal{L} \supset \lambda_i \left(X \bar{u}_i P_L \psi + X^* \bar{\psi} P_R u_i \right) + \lambda'_{ij} \left(X^* \bar{d}_i P_L d_i^c + X \bar{d}_i^c P_R d_i \right)$

- If *X^{1,2}* have CP-violating phases, baryon asymmetry can be explained
- If $(m_p m_e) < m_\psi < (m_p + m_e)$ ψ can be the DM, proton stable
- λ' =0 for i=i
- \bullet *m*_{ψ} ~ 1 GeV
- $m_\chi \gtrsim 1$ TeV

See e.g.: Allahverdi, Dev, Dutta[[1712.02713](https://arxiv.org/abs/1712.02713)] Dev, Mohapatra [[1504.07196\]](https://arxiv.org/pdf/1504.07196) Allahverdi, Dutta, Sinha [\[1005.2804\]](https://arxiv.org/pdf/1005.2804)

Generating a Baryon Mixing to ψ ($\Delta B=1$)

ds-u coupling or $\lambda_1 \lambda_{12}$ at tree level

All higher-generational couplings at loop-level: $\lambda_{\mathsf{k}}^{}\lambda_{\mathsf{j}\mathsf{j}}^{\mathsf{v}}$

Adrian Thompson (Northwestern U.) and the Controller of the TeVPA 2024 August 29, 2024

Decays of the Baryons to ψ and a Photon ($\Delta B=1$)

ds-u coupling or $\lambda^{}_1\lambda^{\prime}$

All higher-generational couplings: $\lambda^{}_{\mathsf{k}} \lambda^{}_{\mathsf{i} \mathsf{j}}$

Operator Matching to the ChiPT Lagrangian (*d-s-u coupling)*

- 1. Match the quark-level operator to the SU(3) representation after integrating out the
- *2.* Write down the SU(3)-invariant interactions between the new physics spurion C^R and the meson octet $u \sim e^{\phi/f}$ and baryon octet *B*

 K^+

Expansion of the ChiPT New Physics Lagrangian: Zeroth order

$$
\mathcal{L}_{\text{eff},\text{ChPT}}^{(0)} = \beta \text{Tr} [\hat{C}^R u^\dagger B_R \psi u] \qquad b_R^\dagger [-i\sigma^2] \psi_R^* = \bar{b} P_L \psi^c \text{ and } u = e^{i\Phi/f_\pi}
$$

Adrian Thompson (Northwestern U.) TeVPA 2024 Teven August 29, 2024

Expansion of the ChiPT New Physics Lagrangian: First order in $1/f$

$$
\mathcal{L}_{\text{eff},\text{ChPT}}^{(0)} = \beta \text{Tr} [\hat{C}^R u^\dagger B_R \psi u] \qquad b_R^\dagger [-i\sigma^2] \psi_R^* = \bar{b} P_L \psi^c \text{ and } u = e^{i\Phi/f_\pi}
$$

Expansion of the ChiPT New Physics Lagrangian: Second order in 1/ $\textcolor{red}_{\mathcal{F}_{\pi}}$

$$
\mathcal{L}_{\text{eff,ChPT}}^{(0)} = \beta \text{Tr} [\hat{C}^{R} u^{\dagger} B_{R} \psi u] \qquad b_{R}^{\dagger} [-i\sigma^{2}] \psi_{R}^{*} = \bar{b} P_{L} \psi^{c} \text{ and } u = e^{i\Phi/f_{\pi}}
$$
\n
$$
u^{\dagger} \simeq 1 - i \frac{\phi}{2f_{\pi}} - \frac{\phi^{\dagger} \phi}{8f_{\pi}^{2}}
$$
\nSecond order expansion:
\n
$$
\mathcal{L}_{\text{eff,ChPT}}^{(0)} \supset \frac{\beta}{f_{\pi}^{2}} \frac{\lambda_{1} \lambda_{12}'}{m_{X}^{2}} \bigg(-\sqrt{\frac{3}{8}} K^{-} K^{+} \bar{\psi}^{c} P_{R} \Lambda - \frac{K^{-} K^{+} \bar{\psi}^{c} P_{R} \Sigma^{0}}{2\sqrt{2}} + \frac{\pi^{+} K^{-} \bar{\psi}^{c} P_{R} n}{2} + \sqrt{\frac{3}{2}} \frac{\eta^{8} K^{-} \bar{\psi}^{c} P_{R} p}{4\sqrt{2}} + \sqrt{\frac{3}{2}} \frac{\eta^{8} K^{+} \bar{\psi}^{c} P_{R} \Xi^{-}}{4} + \frac{\pi^{-} K^{+} \bar{\psi}^{c} P_{R} \Xi^{0}}{2} + \frac{\pi^{0} K^{+} \bar{\psi}^{c} P_{R} \Xi^{-}}{4\sqrt{2}} - \frac{K^{0} \pi^{+} \bar{\psi}^{c} P_{R} \Xi^{-}}{4F^{2}}
$$
\n
$$
+ \frac{\pi^{0} \pi^{-} \bar{\psi}^{c} P_{R} \Sigma^{+}}{2\sqrt{2}} + \frac{\pi^{0} \pi^{+} \bar{\psi}^{c} P_{R} \Sigma^{-}}{2\sqrt{2}} - \frac{K^{+} \overline{K^{0}} \bar{\psi}^{c} P_{R} \Sigma^{-}}{4} - \frac{\pi^{-} \overline{K^{0}} \bar{\psi}^{c} P_{R} \Sigma^{0}}{4} + \frac{\pi^{0} K^{-} \bar{\psi}^{c} P_{R} \Sigma^{+}}{4} - \frac{1}{\sqrt{2}} \pi^{-} \pi^{+} \bar{\psi}^{c} P_{R} \Sigma^{0} + \text{h.c.} \bigg) + \mathcal{O}(1/f_{\pi}^{3})
$$

Adrian Thompson (Northwestern U.) and the Controller of the Controller Controller TeVPA 2024 August 29, 2024

10

Enhancement of the Baryon CM Energy in Dense Matter

- Dense nuclear matter: baryons get a kinetic mass \rightarrow lifts the CM frame energy
- Allows us to probe decays that would otherwise be kinematically forbidden in vacuum!
	- $\circ \quad \rightarrow \mathsf{We}$ can decay to ψ with masses up to \sim 1.4 GeV

Impact of ΔB processes on Binary Pulsars

M c Berryman, Gardner, Zakeri [[2305.13377\]](https://arxiv.org/pdf/2305.13377) [\[2311.13649](https://arxiv.org/pdf/2311.13649)] [[2201.02637\]](https://arxiv.org/pdf/2201.02637)

$$
\frac{\dot{B}}{4\pi} = -\int e^{\nu(r)} \left[1 - \frac{2M(r)}{r} \right]^{-\frac{1}{2}} \Gamma_{\rm nm}(r) n(r) r^2 dr
$$

Adrian Thompson (Northwestern U.) and the Controller of the TeVPA 2024 August 29, 2024

 M_p

Impact of ΔB processes on Binary Pulsars

Systems in this study

Mp

● We looked at constraints on the coupling product

 $|\lambda_k \lambda'_{ij}|$

- We find stringent constraints from binary pulsars down to the 10-5 level (nucleonic Equation of State or EoS)
- Potentially as low as 10^{-9} if we have hyperonic EoS!

mX **= 1 TeV**

Comparison with Laboratory Limits: lowest quark generation couplings Preliminary $10⁰$ **Binary Pulsars** (Nucleonic EoS) 10^{-2} ϕ **CMS** Monojet **= 1 TeV** $m_{\rm v}$ = 1 *(ds)u* 10^{-4} **Binary Pulsars** (Hyperonic EoS) 10^{-6} Super-K $pp \rightarrow K^+K^+$ 10^{-8} DUNE-FD, Hyper-K $pp \to K^+K^+$ 10^{-10} 1.0 1.1 1.2 1.3 1.4 1.5 1.6 m_{ψ} (GeV)

Adrian Thompson (Northwestern U.) and the Control of the Teventh Control of Teventh August 29, 2024 August 29, 2024

Outlook

- Neutron stars are extremely sensitive probes of baryon number violation; sensitive to TeV scale mediators
- Whether or not NS have hyperonic EoS makes a huge difference a good motivation to study nuclear matter and strange physics!
- Laboratory probes and colliders complimentary to these bounds for larger masses of the Majorana fermion > GeV, and for higher-generational couplings

Backup Deck

The new physics spurion terms

Integrating out *X* and matching the operator $d\text{su}\psi$ gives rise to the spurion \mathcal{C}^{R} :

$$
\hat{C}^{R}[(ds)u] = \frac{\lambda'_{12}\lambda_1}{m_X^2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}
$$

For the higher generational couplings, the spurion term depends on a loop factor and CKM matrix elements:

$$
\hat{C}^{R}[(ds)u] = \frac{G_{F}\sqrt{3}}{8\pi^{2}m_{W}^{2}} \sum_{i,j\neq 1,l\neq k} \lambda_{i}\lambda_{kj}'V_{il}V_{1j}^{*}m_{d_{j}}m_{u_{i}}F(x_{d_{j}}, x_{u_{i}}, x_{X}) \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}
$$

$$
\hat{C}^{R}[(dd)u] = \frac{G_{F}\sqrt{3}}{8\pi^{2}m_{W}^{2}} \sum_{i}\sum_{j\neq 1} \lambda_{i}\lambda_{1j}'V_{i1}V_{1j}^{*}m_{d_{j}}m_{u_{i}}F(x_{d_{j}}, x_{u_{i}}, x_{X}) \times \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}
$$

Adrian Thompson (Northwestern U.) and the Control of the Control of TeVPA 2024 August 29, 2024

What about dark matter laboratory searches?

 ψ can be the dark matter if:

$$
m_p - m_e < m_\psi < m_p + m_e
$$

Consider the Earth-captured ambient DM flux through a large detector:

$$
f_{\psi}(\vec{v}) = \frac{1}{N_{\rm esc} \pi^{3/2} v_0^3} \exp\bigg(-\frac{(\vec{v} + \vec{v}_{\oplus})^2}{v_0^2}\bigg) \Theta(v_{\rm esc} - |\vec{v} + \vec{v}_{\oplus}|)
$$

Then look for ψ n $\rightarrow \pi^- K^+$ in the detector; <u>a very</u> unique final state!

E.g. DUNE Far Detector (FD):

$$
|\lambda_1 \lambda_{12}'| > 2.69 \times 10^{-7} \bigg(\frac{m_X}{\text{TeV}} \bigg)^2 \qquad \text{DUNE-FD sensitivity to DM, 90\% CL}
$$

What about dark matter laboratory searches?

- Alternatively, ψ could be Dirac with *B=+1* and assign *B=-⅔* for the heavy *X* mediator
- In this case, B is conserved…but hidden away in the dark sector
- For Dirac ψ , the di-proton decay channel vanishes

Laboratory Probes

- Collider searches:
	- Monotop, Monojet, and missing energy searches
- BES-III, LHCb: see [2111.12712]
- Di-nucleon decay searches:
	- Super-K: large volume search for spontaneous di-proton decay
	- DUNE-FD? Hyper-K?

Adrian Thompson (Northwestern U.) and the Controller of the TeVPA 2024 August 29, 2024

Enhancement of the Baryon CM Energy in Dense Matter

Vector meson self-energy

$$
k^{*\mu} \equiv k^{\mu} - \sum^{\downarrow} {\mu} = \left\{ E^*(k^*), \vec{k} - \vec{\Sigma} \right\}
$$

- In the dense nuclear matter, baryons get a kinetic mass which lifts the available energy in the CM frame
- This allows us to probe decays that would otherwise be kinematically forbidden in vacuum!
	- $\circ \rightarrow \mathsf{We}$ can decay to ψ with masses up to \sim 1.5 GeV

Impact of ΔB processes on the Star's spin rate

Berryman, Gardner, Zakeri [[2305.13377\]](https://arxiv.org/pdf/2305.13377) [\[2311.13649](https://arxiv.org/pdf/2311.13649)] [[2201.02637\]](https://arxiv.org/pdf/2201.02637)

$$
\frac{\dot{B}}{4\pi} = -\int e^{\nu(r)} \left[1 - \frac{2M(r)}{r} \right]^{-\frac{1}{2}} \Gamma_{nm}(r) n(r) r^2 dr
$$

$$
\dot{P}_b^{\dot{E}} = -2 \left(\frac{\dot{M}_1^{\text{eff}} + \dot{M}_2^{\text{eff}}}{M_1 + M_2} \right) P_b, \qquad \dot{M}^{\text{eff}} = \left(\partial_{\mathcal{E}_c} M + \left(\frac{\Omega^2}{2} \right) \partial_{\mathcal{E}_c} I \right) \left(\frac{\dot{B}}{\partial_{\mathcal{E}_c} B} \right)
$$

$$
\left(\frac{\dot{P}_b}{P_b}\right)^{\text{obs}} = \underbrace{\left(\frac{\dot{P}_b}{P_b}\right)^{\text{GR}}}_{\text{intrinsic}} + \left(\frac{\dot{P}_b}{P_b}\right)^{E} + \left(\frac{\dot{P}_b}{P_b}\right)^{\text{ext}}
$$
\nRelative rate of orbital\n\nBNV perturbs the energy loss term

Adrian Thompson (Northwestern U.) and the Controller of the TeVPA 2024 August 29, 2024

M₁

period decay

M2

Neutron Star Hyperonic EoS

Possibility of dark sector states escaping the star?

Adrian Thompson (Northwestern U.) and the Control of the Teventh Control of Teventh August 29, 2024 August 29, 2024

Comparison with Laboratory Limits: Higher generational couplings

- Di-nucleon decays *pp→K* ⁺*K* + highly suppressed for higher generational couplings (CKM + loop suppressed)
- Binary pulsar constraints no longer benefit from pure tree-level couplings to Λ -baryons
- Binary pulsar set leading bounds below $m\psi$ < 1.3 GeV \rightarrow collider searches probe higher masses