

240

The Science Potential of the Cherenkov Telescope Array Observatory

Manuel Meyer, University of Southern Denmark <u>mey@sdu.dk</u> On behalf of the CTAO Consortium August 27, 2024 TeVPA 2024, Chicago, USA

Outline

 Status of CTAO
 Recent Results for Sensitivity Projections for CTAO

 Galactic Science
 Extragalactic Science
 Fundamental Physics

- An astrophysics and particle physics scientific tool
- Observes the most extreme highest energy sources in the universe
- Builds on the success of smaller existing arrays - H.E.S.S., MAGIC, and VERITAS

The CTAO Consortium

- More than 1400 scientists
- ~ 200 institutes
- 25 countries on 6 continents

CTAO locations

Berlin — Science Data Management Center

Bologna — Headquarters

La Palma Northern Site

Chile Southern (ESO) Site

[map shows formal participants only]

CTAO Telescopes

MST alternative: Schwarzschild-Couder Design See talk by Reshmi Mukherjee Mid sized telescopes 11.5m dish 0.1-10 TeV Davies-Cotton design

15-4

Large sized telescopes _23m dish

0.02-0.2 TeV

Parabolic

segmented

mirror

Small sized telescopes 4.3m dish 5-300 TeV Schwarzschild-Couder design

Northern Array Site

[Slide adapted from Stuart McMuldroch]

- Construction of 3 more LST telescopes progressing rapidly
- LSTNs foundations: completed!
- LSTN-02: azimuth ring, pins and boogies completed

- LSTN-03: most of the mount completed
- LSTN-04: Dish structure installed
- MSTNs: planning foundation work
- Infrastructure: almost complete

Southern Array Site

Getting ready for construction

- Topographical Survey: complete
- Geotechnical study: nearly complete
- 23kV electrical Overhead Line: under negotiation

- 10 kV Power Conditioning System: Out for tender
- Array Roads and Telescope Foundations: Contract late this year

Performance: Sensitivity

Performance: Sensitivity for Transient CTAO

Sources

Performance: angular and energy resolution

Science with CTAO

- Laid out by <u>CTAO Consortium in 2018</u>
- Defines science themes and key science programs
- In the following: selected updates on sensitivity projections for key science programs

Not covered today

Transient science:

- CTAO will observe a large number of transient phenomena
 - GRBs
 - GW counterparts
 - Core collapse supernovae
 - ..
- Multi-messenger science:
 - GW counterparts
 - Neutrino counterparts

Galactic Science with CTAO

[image credit: DESY/Scicom Lab]

Galactic Plane Survey

- 480 hours in first two years
- 1140 hours in following 8 years
- Up to 500 sources could be detected (5 times as much as H.E.S.S. or HAWC surveys)

CTAO

Galactic PeVatrons

- Sources of Galactic cosmic rays (protons) up to 3 PeV still unknown
- Detection of \gtrsim 100 TeV photons would suggest presence of freshly accelerated CR protons with PeV energies
- Gamma rays would be produced from π^0 decay produced in $p + p \rightarrow \pi + X$, leptonic scenarios suffer from Klein-Nishina suppression
- Usually SNRs are preferred candidates due to detected π^0 bump
- Recently: LHAASO detected several γ -ray sources \gtrsim 100 TeV, likely associated with PWNe \Rightarrow leptonic PeVatrons

Could CTAO detect high energy cutoff to identify hadronic PeVatrons?

- Model: gamma rays due to π^0 decay from CR interactions with molecular gas
- 10 hrs of observation time with southern array assumed
- Sources randomly distributed within
 b ∈ [-0.5°, + 0.5°] and l ∈ [±5°, ± 60°] which are regions of the galactic plane survey
- Most likely: SNR hadronic PeVatrons detected in GPS if they have hard proton spectra and are point like
- If no cutoff detected: GPS will provide candidates for deep observations

Could CTAO identify hadronic PeVatrons?

- For soft sources with $\Gamma_p\gtrsim 2.3,250$ hours of observations can nail down PeV hypothesis
- Could be done with SST under moonlight conditions (with double observation time)

RS Oph 1 day after outburst

Galactic Transient Sources

- Microquasars like Cyg X-1 and Cyg X-3, SS 433
- Close-by novae like recurring RS Oph
- Flares from Crab Nebula with LSTs in less than 1 hour of observation time

Crab Nebula flares

Survey of the Large Magellanic Cloud

- 340 hours of observations foreseen
- Will probe particle acceleration in:
 - Star forming region
 30 Doradus
 - Remnant of SN1987A

Simulated detection significance (for spectrally hard emission scenario)

Extragalactic Science with CTAO

[image credit: DESY/Scicom Lab]

CTAO

AGN population

CTA-South, E>100 GeV, 20.0h livetime

Sources with known redshift from 4LAC catalog extrapolated with power law and EBL absorption

- CTAO will detect hundreds of AGN
 - Long term monitoring program
 - High quality spectra
 - Follow up of GeV and TeV flares

- Extragalactic survey
- Will provide blazar luminosity function up to TeV energies

Recent extragalactic science highlights with LST1

- Follow-up observations of GRB221009A with LST1
 - see talk by Kenta Terauchi
- Detection of OP313 at z = 0.997 with LST1 — see talk by Mireia Nievas
- Study the variable VHE gamma-ray emission of bright AGN with LST 1
 - see talk by Ryuji Takeishi

Constraining the extragalactic background light

Constraining intergalactic magnetic fields

 \bullet Excess γ rays at lower energies

[e.g. Neronov & Semikoz 2008]

- Extended γ-ray halos
 [Aharonian et al. 1994]
- Time delayed γ-ray emission
 [Plaga 1995]

[CTAO Consortium: Abdalla et al. 2021]

YEBL

Хсмв

Constraining intergalactic magnetic fields

Searching for oscillations between gamma rays and axion-like particles

Photon-ALP oscillations could lead to a reduced gamma-ray opacity or oscillation features in gammaray spectra

CTAO

Searching for oscillations between gamma rays and axion-like particles

Perseus Galaxy Cluster

- Most promising target to find diffuse gamma-ray emission from accelerated CRp
- Non-thermal emission from p-p interactions
- Power law in CRp momentum distribution modeled with index $\alpha_{\rm CR_p}$ and radial profile following electron density with slope $\eta_{\rm CR_p}$
- 300 hours of observations assumed with 15 MSTs and 4 LSTs
- In case of non-detection: constraints on $X_{\rm CR_p} = U_{\rm CR_p}/U_{\rm th}$ would improve by ~ one order of magnitude
- Purely hadronic model could be detected with CTAO
- CTAO will test an unexplored region of the dark matter decay parameter space for TeV WIMPs

Indirect Dark matter searches with CTAO

Expected photon flux from WIMP annihilation

J factor for Galactic center of the Milky Way

[CTAO Consortium: Archaryya et al. 2021]

Modeling Galactic Center Region for CTA sensitivity study

- Galactic center survey: 525 hours over first 10 years
- Extended survey: additional 300 hours

Projected CTA sensitivity for DM annihilation

Sensitivity for Dark matter annihilation line searches

Conclusions

- CTAO is happening!
 - All LSTs under construction on Northern Site
 - Construction of first MSTs on both sites to begin 2025-2026
- Wealth of science discoveries awaits us:
 - Galactic hadronic PeVatrons
 - Galactic Transient Sources
 - AGN population and identification of emission mechanisms in blazars (see backup)
 - Probing gamma-ray propagation over cosmological distances (EBL, IGMF, axions)
 - Searches for TeV WIMP dark matter

CTAO

Back up

Short term Blazar variability

- Assumed models:
 - one-zone leptonic model with power-law injection and radiative cooling (no specific acceleration mechanism)
 - Particle acceleration via magnetic reconnection
- Models tuned to reproduce variability observed from closeby blazar Mkn 421
- CTA observations can shed light on acceleration mechanism

Models: time-dependent spectral energy distributions

Short term Blazar variability

- Assumed models:
 - one-zone leptonic model with power-law injection and radiative cooling (no specific acceleration mechanism)
 - Particle acceleration via magnetic reconnection
- Models tuned to reproduce variability observed from closeby blazar Mkn 421
- CTA observations can shed light on acceleration mechanism

Simulated light curves

Short term Blazar variability

- Assumed models:
 - one-zone leptonic model with power-law injection and radiative cooling (no specific acceleration mechanism)
 - Particle acceleration via magnetic reconnection
- Models tuned to reproduce variability observed from closeby blazar Mkn 421
- CTA observations can shed light on acceleration mechanism

"Observed" spectral parameters

Searching for signatures of Lorentz invariance violation

LIV modifies dispersion relation of photon (subluminal case):

CTAO

41

$$E_{\gamma}^2 - p_{\gamma}^2 = -\frac{E_{\gamma}^{n+1}}{E_{\text{LIV}}^n}$$

Modifies the energy threshold for pair production

XEBL

Searching for signatures of Lorentz invariance violation

LIV modifies dispersion relation of photon (subluminal case):

$$E_{\gamma}^2 - p_{\gamma}^2 = -\frac{E_{\gamma}^{n+1}}{E_{\text{LIV}}^n}$$

Modifies the energy threshold for pair production

CTAO

Foreseen CTA observations of the Galactic Center

- Galactic center survey: 525 hours over first 10 years
- Extended survey: additional 300 hours

CTAO

Observational setup for DM line search

	Galactic Centre	dSphs
Exposure time	$500\mathrm{hr}$	100 hr per target
DM density profile	Einasto [7.1]	J-factors in Tab. 2
RoI and binning	4 rings of width $0.5^{\circ} deg [A.2]$	Single RoI per dSphs, 0.5°
Mask	none [7.2]	none
IEM	Base MAX [7.3]	none
Analysis method	Sliding energy window, PL assumption on counts	
Window size	$8\sigma_{ m res}(E_0)$ [A.1]	
Systematic uncertainty	2.5%, per energy bin [7.4]	

CTAO

Dark matter Decay sensitivity from Perseus

100