Astrophysical Lessons from LIGO-Virgo-KAGRA's Black Holes

TevPA @University of Chicago August 29 2024

Canadian Institute for L'institut Canadien Theoretical Astrophysics d'astrophysique théorique

Maya Fishbach (she/her) fishbach@cita.utoronto.ca

LIGO-Virgo-KAGRA Detectors

Over 200 gravitational-wave observations!

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Black Holes EM Neutron Stars

•••

New from O4! **GW230529**

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

How are black holes made? **Compact object remnants of massive stars**

Initial mass of star

5

How are merging binary black holes made?

"Formation channels"

Isolated

Common Envelope Stable Roche Lobe Overflow Chemically Homogeneous Evolution Pop III Stars

Triples with common envelope

Gaseous environments

Slide adapted from Mike Zevin adapted from Selma de Mink

Dynamics

Triples

Stellar flybys

Globular clusters Nuclear star clusters

Young star clusters

Active galactic nuclei

Non-stellar origin: primordial black holes

Where and when do black holes merge?

In the context of large scale structure and the cosmic expansion history

Gravitational waves encode source properties, like...

How *big* is each black hole or neutron star?

Where and when did they merge?

How fast are they spinning?

How squishy are neutron stars?

From Single Events to a Population

- Introduce a population model that describes the distributions of masses, spins, redshifts across multiple events.
- Example: Fit a power law to black hole masses.
- Take into account measurement uncertainty and selection effects.
 - Don't just fit the "detected distribution!" (Essick & MF 2024)

Merging black holes account for only 0.01% of massive stars (by mass), but comparable to the density of massive stars that are still alive

Schiebelbein-Zwack & MF ApJ 970 128 (2024)

Living Stars > $10M_{\odot}$ (Katsianis et al., 2021) Living Stars > $10M_{\odot}$ (Madau & Fragos, 2017)

10

Multimessenger view of the stellar graveyard

- Merger rate evolution and long gamma-ray bursts
- Most massive black holes and pair-instability supernovae
- Implications for cosmological expansion history

Black hole merger rate evolves with redshift

Merger rate density

LVK PRX 13 011048 (2023)

Method based on MF, Farr & Holz 2018 ApJL 863 L41

zRedshift

Do long GRBs trace binary black hole formation?

Long GRB Rate with typically-predicted delay time distribution matches shape of binary black hole merger rate (but BBH mergers are ~20 times more rare)

LGRB Rate from Ghirlanda & Salvaterra (2022) See Bavera, Fragos, Zapartas et al. (2022) for population synthesis predictions

Next generation groundbased gravitational-wave detectors

Mapping the black hole merger rate across *all* of cosmic time, from the very first black holes

Evans et al., Cosmic Explorer Horizon Study, arXiv:2109.09882

Pair-instability mass gap

For stellar collapse, (pulsational) pair-instability supernovae predict an absence of black hole remnants between $\sim 50 - 130 M_{\odot}$

Image credit: Gemini Observatory/NSF/AURA/ illustration by Joy Pollard

Black hole mass in solar masses

Where is the pair instability mass gap?

Does the mass gap start at higher masses (adjustment to nuclear reaction rates? New particles in stellar cores?)

Or do the heaviest black holes have a non-stellar origin? (Merger products of smaller black holes? Primordial black holes?)

Where is the pair instability mass gap?

Does the mass gap start at higher masses (adjustment to nuclear reaction rates? New particles in stellar cores?)

Or do the heaviest black holes have a non-stellar origin? (Merger products of smaller black holes? Primordial black holes?)

Could the biggest black holes be made out of smaller black holes (rather than stellar collapse)?

Black holes above ~45 solar masses are spinning more rapidly, suggesting they are made from smaller black holes

Antonini, Romero-Shaw & Callister arXiv:2406.19044 Ongoing investigations by Adith Praveen & MF in prep

Lower edge of pairinstability mass gap?

Primary mass $[M_{\odot}]$

Standard Siren Cosmology

1986)...

...but the redshift is degenerate with the mass

Binary coalescences provide a direct measurement of the luminosity distance (Schutz

position and orientation

Goal: measure the redshift—distance relation

And thereby infer cosmological parameters

 Depends on constituents of the Universe: matter density, dark energy density, dark energy equation of state

GW170817: A standard siren with an electromagnetic counterpart

Figure Credit: Will Farr/ LIGO Scientific Collaboration

Farr, MF, Ye & Holz ApJL 883 L42 (2019)

Application of spectral siren cosmology to latest gravitational-wave catalog

LVK ApJ 949 76 (2023)

5

Multimessenger view of the stellar graveyard

- Redshift evolution of black hole merger rate and long gamma-ray bursts
 - Long gamma-ray bursts may trace progenitor rate of binary black hole mergers, with flat-in-log delay time distribution
 - Do long gamma-ray bursts produce spinning black holes? (How do black holes get their spins?)
- Most massive black holes and **pair-instability supernovae**
 - Do black hole spins imply that the lower edge of the pair-instability mass gap is at ~45 solar masses? • What are the implications for particle physics?

 - Does this match the observed rate of pulsational/ pair-instability SNe?
- Measuring the cosmic expansion history
 - Use pair-instability and other features in the mass distribution to simultaneously infer redshifts and distances
 - Gravitational-wave standard sirens are also uniquely sensitive to dark energy theories and gravitational lensing

