Experimental searches for UHE neutrinos

Brian Clark (UMD)

TeVPA 2024 Chicago / August 28, 2024

Why Study Neutrinos?

Origin of UHE Cosmic Particles

The universe creates extraordinarily energetic particles (protons, neutrons, etc.)

Where are they accelerated?

How are they accelerated to such tremendous energies?

Observational Challenges

Cosmic rays

- Bent by magnetic fields
- Do not escape dense environments

 $p + \gamma \rightarrow \Delta^+ \rightarrow p(n) + \pi^0(\pi^+)$

 100 MPc horizon above 10^{19.5} eV (GZK interaction)

Gamma rays: absorbed by CMB, EBL, dust

We need a new messenger!

Astrophysical Neutrinos

Neutrinos born in (or near) the cosmic ray accelerators

Unambiguous proof of hadronic acceleration

Detected in 2012!

Cosmogenic Neutrinos

Pions from the GZK interaction further decay

$$p + \gamma_{CMB/EBL} \rightarrow n + \pi^{+}$$

$$\downarrow \mu^{+} + \nu_{\mu}$$

$$\downarrow e^{+} + \nu_{e} + (1)$$

Undetected. But! Shape encodes important astrophysics:

- Maximum accelerating energy
- Source redshift evolution
- Cosmic ray composition

How to Observe a Neutrino

"Neutral Current" Interaction

The byproducts are <u>charged</u> and moving <u>faster</u> than light in ice. Emit Cherenkov radiation.

Radio Cherenkov Effect

"Askaryan Emission"

The shower becomes net negatively charged

Wavelengths the size of the shower add *coherently*

10cm transverse size → 200 MHz-1.2GHz broadband radio pulse

ANITA PRL 99, 171101 (2007)

Signature of a neutrino interaction

Flash of blue/UV light, and a pulse of radio waves

The Need

Extremely large volume (1 to 10³ km³)

Transparent medium

IceCube as a UHE detector

Can use the IceCube detector to look for very high energy events

Latest analysis, using 12.6 yrs of data (2010-23), finds three events at PeV scale

Consistent with flux of astrophysical neutrinos

Latest EHE Results from IceCube

New world leading limit on flux of EHE neutrinos

$$E^2 \Phi \cong 10^{-8} GeV \, cm^2 s^{-1} sr^{-1}$$

Improved by almost factor 2 @ 1 EeV!

M. Meier, B. Clark Moriond VHEPU 2024

🙀 | UHE Experiments | Brian Clark, August 28 2024

An exciting hint from KM3NeT

KM3NeT (ARCA21) observes very bright track

Brightness hints at few x 10 PeV!

Uncharted Territory

 Event is well reconstructed as a high energy muon crossing entire ARCA21 detector

J. Coelho, Neutrino 2024, M. Circella (this conference)

An exciting hint from KM3NeT

Going Bigger

But we cannot build 100x IceCube...

Switch to the radio technique Attenuation length: ~1km

L. Pyras

UHE Neutrino Detection Landscape

UHE Experiments | Brian Clark, August 28 2024

Two basic approaches

Panoptically with remote observatories

In-situ with embedded arrays

ice

rock

air

ARA and ARIANNA

Complimentary experiments leveraging the *in-situ* approach

ARIANNA (ran 2011-2020 @ Moore's Bay)

Phased Array

Latest ARA station has threshold-lowering phased array trigger – beamform on FPGA to lower thresholds

2x more effective volume at trigger level at 10 PeV!

🐓 | Radio Detection Overview | Brian Clark, July 19 2022

Radio Neutrino Observatory – Greenland

Deployment under since 2021, goal of 35 stations -- 8 so far!

First UHE observatory in the northern hemisphere

丰 Hpol Vpol Ch 23 Ch 22 Trigger Ch 10 Channels Combines strength of deep (ARA, RICE) and shallow (ARIANNA) technology, including phased array 22

LPDA

Radio Detection Overview | Brian Clark, July 19 2022

Radio Detection Overview | Brian Clark, July 19 2022

IceCube Gen2

500 km² radio array, with both shallow and deep component

IceCube Gen2

20m 500 km² radio array, with both shallow and deep -10m component -20m see talk by <u>A. Karle</u> N Ч Y IceCube-Gen2 Radio IceCube-Gen2 Or String String Power String Helper : Helper -150m 5 km 1 km 250 m

Antarctic Impulsive Transient Antenna

Array of horn antennas suspended from NASA Long Duration Balloon (LDB)

Four flights 2006-2016

- Askaryan (neutrino) channel: no excess above background
- ~100 UHECR seen

Demonstrates the feasibility of the panoptic method

PUEO

Payload for Ultra High Energy Observations

Successor to ANITA experiment array of horns, with phased trigger, to fly on an LDB

>10x more sensitive than ANITA, especially good for transients, point sources, MMA

Funded through the NASA Pioneer Program, flight in 2025-26 season!

PUEO

Payload for Ultra High Energy Observations

Successor to ANITA experiment array of horns, with phased trigger, to fly on an LDB

>10x more sensitive than ANITA, especially good for transients, point sources, MMA

Funded through the NASA Pioneer Program, flight in 2025-26 season! See talks by <u>R. Scrandis</u>, <u>L. Beaufore, A.</u> <u>Cummings</u>

Two basic approaches

Panoptically with remote observatories

In-situ with embedded arrays

ice

rock

air

UHE Experiments | Brian Clark, August 28 2024

BEACON, GRAND

One option is detection with the radio mechanism

BEACON Prototype – White Mountain, CA NimA Vol 1048 (2023), 167889, arXiv 2206.09660

GRANDProto13–Ghobi Desert (Dunhuang, China) P-X. Ma ICRC 2023 <u>arxiv</u> <u>2307.12769</u>

100 Sample Simulated Cosmic Ray Event 75 Filtered Waveform Antenna 2H (adu) Run 5911 Event 73399 50 25 -50 -75 -100 500 100 200 300 400 Time (ns)

Arrays see cosmic rays, planes – lots of work ongoing to understand backgrounds!

TRINITY, TAMBO, EUSO

An alternative relies on traditional tanks and Cherenkov telescopes

TAU AIR-SHOWER MOUNTAIN-BASED OBSERVATORY (TAMBO) · COLCA VALLEY, PERU

Some concepts even space born (e.g. EUSO, POEMMA)

Trinity Demonstrator – Frisco Peak, Utah

Radar Echo Telescope

"Active" experiment – try to detect radar reflection from ionization deposition

Cosmic ray demonstrator (RET-CR) deployed & run in Greenland this year – data analysis to begin!

Courtesy of Steven Prohira

Radar Echo Telescope

"Active" experiment – try to detect radar reflection from ionization deposition

Cosmic ray demonstrator (RET CR) deployed & run in Greenland this year – data analysis to begin!

The Status Quo

Series of experiments have demonstrated the feasibility and scalability of UHE technology

The (near) Future

Series of experiments have demonstrated the feasibility and scalability of UHE technology

Future projects chart steady progress in opening this discovery space

Conclusions

Neutrinos are unique messengers to the cosmos – we really want, and need, to see $\mathcal{O}(100)$ PeV events!

Recommended as science priority by P5 and Astro2020

Extremely active field – lots of ideas on how to achieve the necessary effective volume (ice, mountains, ...)

The presenter acknowledges support from the NSF through awards PHY-2310125 and PHY-2411849.

Thank You! Questions?

10 4 1 4 4 10 4 4

"Where the telescope ends, the microscope begins. Which of the two has the grander view?" —Victor Hugo