TeVPA 2024 University of Chicago, 29 August 2024

NANOGRAV AND **GRAVITATIONAL WAVES** FROM THE EARLY UNIVERSE

Kimberly Boddy University of Texas at Austin

on behalf of the NANOGrav collaboration

Supermassive Black Hole Binaries

Gravitational Wave Landscape

Worldwide Pulsar Timing Array (PTA) Experiments

Effelsberg

Lovell

VLA

CHIME

NANOG

ra٧

Figure credit: T. Cromartie

Multiple pulsar timing array experiments reported evidence for background of nHz gravitational waves

NANOGrav

- SGWB search (2306.16213)
- Observation & Timing (2306.16217)
- Detector & Noise (2306.16218)
- New physics (2306.16219)
- SMBHB (2306.16220)
- Anisotropy (2306.16221)
- Continuous waves (2306.16222)
- Pipeline (2306.16223)

EPTA / InPTA

- SGWB search (2306.16214)
- Data & Timing (2306.16224)
- Noise (2306.16225)
- Continuous waves (2306.16226)
- Signal sources (2306.16227)
- + ULDM (2306.16228)

PPTA

- SGWB search (2306.16215)
- Noise (2306.16229)
- Data (2306.16230)

CPTA
 SGWB search (2306.16216)

High-Precision Timing of Millisecond Pulsars

Pulsar Timing Measurements

NANOGrav Timing Data Summary: 15-Year Data Set, 68 Pulsars

Figure credit: T. Cromartie

Pulsar Timing Array

Background by Little Shadow

Background by Little Shadow

NANOGrav 15-year Results

NANOGrav (2306.16213)

Astrophysical Interpretation: Supermassive Black Hole Binaries

NANOGrav (2306.16220)

History of the Universe

Figure credit: BICEP2

New Physics Models

InflationNon-minimal blue-tilted models

Topological defects Cosmic strings, domain walls

Phase transitions QCD transition in BSM, dark sector

Enhanced scalar perturbations Primordial black hole production

NANOGrav New Physics Search

The NANOGrav 15-year Data Set: Search for Signals from New Physics

Adeela Afzal,^{1,2} Gabriella Agazie,³ Akash Anumarlapudi,³ Anne M. Archibald,⁴ Zaven Arzoumanian,⁵ PAUL T. BAKER,⁶ BENCE BÉCSY,⁷ JOSE JUAN BLANCO-PILLADO,^{8,9,10} LAURA BLECHA,¹¹ KIMBERLY K. BODDY,¹² ADAM BRAZIER,^{13, 14} PAUL R. BROOK,¹⁵ SARAH BURKE-SPOLAOR,^{16, 17} RAND BURNETTE,⁷ ROBIN CASE,⁷ MARIA CHARISI,¹⁸ SHAMI CHATTERJEE,¹³ KATERINA CHATZIIOANNOU,¹⁹ BELINDA D. CHEESEBORO,^{16,17} SIYUAN CHEN,²⁰ TYLER COHEN,²¹ JAMES M. CORDES,¹³ NEIL J. CORNISH,²² FRONEFIELD CRAWFORD,²³ H. THANKFUL CROMARTIE,^{13, *} KATHRYN CROWTER,²⁴ CURT J. CUTLER,^{25,19} MEGAN E. DECESAR,²⁶ DALLAS DEGAN,⁷ PAUL B. DEMOREST,²⁷ HELING DENG,⁷ TIMOTHY DOLCH,^{28,29} BRENDAN DRACHLER,^{30,31} RICHARD VON ECKARDSTEIN,³² ELIZABETH C. FERRARA,^{33,34,35} WILLIAM FIORE,^{16,17} EMMANUEL FONSECA,^{16,17} GABRIEL E. FREEDMAN,³ NATE GARVER-DANIELS,^{16,17} PETER A. GENTILE,^{16,17} KYLE A. GERSBACH,¹⁸ JOSEPH GLASER,^{16,17} DEBORAH C. GOOD,^{36,37} LYDIA GUERTIN,³⁸ KAYHAN GÜLTEKIN,³⁹ JEFFREY S. HAZBOUN,⁷ SOPHIE HOURIHANE,¹⁹ KRISTINA ISLO,³ ROSS J. JENNINGS,^{16,17,†} AARON D. JOHNSON,^{3,19} MEGAN L. JONES,³ ANDREW R. KAISER,^{16,17} DAVID L. KAPLAN,³ LUKE ZOLTAN KELLEY,⁴⁰ MATTHEW KERR,⁴¹ JOEY S. KEY,⁴² NIMA LAAL,⁷ MICHAEL T. LAM,^{30,31} WILLIAM G. LAMB,¹⁸ T. JOSEPH W. LAZIO,²⁵ VINCENT S. H. LEE,¹⁹ NATALIA LEWANDOWSKA,⁴³ RAFAEL R. LINO DOS SANTOS,^{44,32} TYSON B. LITTENBERG,⁴⁵ TINGTING LIU,^{16,17} DUNCAN R. LORIMER,^{16,17} JING LUO,^{46,‡} RYAN S. LYNCH,⁴⁷ CHUNG-PEI MA,^{40,48} DUSTIN R. MADISON,⁴⁹ ALEXANDER MCEWEN,³ JAMES W. MCKEE,^{50,51} MAURA A. MCLAUGHLIN,^{16,17} NATASHA MCMANN,¹⁸ BRADLEY W. MEYERS,^{24,52} PATRICK M. MEYERS,¹⁹ CHIARA M. F. MINGARELLI,^{37,36,53} ANDREA MITRIDATE,⁵⁴ JONATHAN NAY,¹² PRIYAMVADA NATARAJAN,^{55,56} CHERRY NG,⁵⁷ DAVID J. NICE,⁵⁸ STELLA KOCH OCKER,¹³ KEN D. OLUM,⁵⁹ TIMOTHY T. PENNUCCI,⁶⁰ BENETGE B. P. PERERA,⁶¹ POLINA PETROV,¹⁸ NIHAN S. POL,¹⁸ HENRI A. RADOVAN,⁶² SCOTT M. RANSOM,⁶³ PAUL S. RAY,⁴¹ JOSEPH D. ROMANO,⁶⁴ SHASHWAT C. SARDESAI,³ ANN SCHMIEDEKAMP,⁶⁵ CARL SCHMIEDEKAMP,⁶⁵ KAI SCHMITZ,³² TOBIAS SCHRÖDER,³² LEVI SCHULT,¹⁸ BRENT J. SHAPIRO-ALBERT,^{16, 17, 66} XAVIER SIEMENS,^{7, 3} JOSEPH SIMON,^{67, §} MAGDALENA S. SIWEK,⁶⁸ INGRID H. STAIRS,²⁴ DANIEL R. STINEBRING,⁶⁹ KEVIN STOVALL,²⁷ PETER STRATMANN,³² JERRY P. SUN,⁷ ABHIMANYU SUSOBHANAN,³ JOSEPH K. SWIGGUM,^{58,†} JACOB TAYLOR,⁷ STEPHEN R. TAYLOR,¹⁸ TANNER TRICKLE,⁷⁰ JACOB E. TURNER,^{16, 17} CANER UNAL,^{71, 72} MICHELE VALLISNERI,^{25, 19} SONALI VERMA,^{73, 74} SARAH J. VIGELAND,³ HALEY M. WAHL,^{16,17} QIAOHONG WANG,¹⁸ CAITLIN A. WITT,^{75,76} DAVID WRIGHT,⁷⁷ OLIVIA YOUNG,^{30,31} AND KATHRYN M. ZUREK⁷⁸

NANOGrav (2306.16219)

New Physics Models: Summary

- IGW: Inflationary Gravitational Waves tensor-to-scalar ratio, tensor spectral index, reheating temperature
- SIGW: Scalar-Induced Gravitational Waves scalar amplitude, frequency shape parameters (delta, gauss, box)
- PT: Phase Transitions (sound-wave analysis & bubble-collisions only) width
- STABLE: Stable Cosmic Strings (cusps, kinks, monochromatic, numerical) string tension
- META: Metastable Cosmic Strings (loops only, loops and segments) string tension, decay parameter
- SUPER: Cosmic Superstrings string tension, intercommutation probability
- DW: Domain Walls transition temperature, energy fraction, high-frequency slope, spectral-shape width

amplitude spectral features both

transition temperature and strength, bubble separation, low/high-frequency slope, spectral-shape

Summary of Results

Bayes factor

NANOGrav (2306.16219)

Median GWB Frequency Spectra

Kimberly Boddy

NANOGrav (2306.16219)

New Physics Models: Deterministic Signatures

 Ultralight dark matter with gravitational coupling only Substructure exhibits pressure oscillations Ultralight dark matter coupled to Standard Model Doppler signal – vector ULDM accelerates pulsar Pulsar spin fluctuations – scalar ULDM causes particle mass fluctuations Reference clock shifts – scalar ULDM alters reference atomic clocks

$$\mathcal{L} \supset \frac{\phi}{\Lambda} \left[\frac{d_{\gamma}}{4e^2} F_{\mu\nu} F^{\mu\nu} + \frac{d_g \beta_3}{2g_3} G^A_{\mu\nu} G^{\mu\nu}_A - \sum_{f=e,\mu} d_f m_f \bar{f} f - \sum_{q=u,d} (d_q + \gamma_q d_g) m_q \bar{q} q \right]$$

Ultralight Dark Matter Results

Upcoming Prospects

Possible future of US pulsar timing: Deep Synoptic Array (DSA-2000)

How can we understand sources? Spectral features?

NANOGrav (2306.16219)

How can we understand sources? Anisotropies?

ESA and Planck Collaboration

Sato-Polito and Kamionkowski (2305.05690)

We have a new window into astrophysics and early Universe cosmology!

More data is incoming and more work needs to be done to extract possible primordial signals.

Natural Sciences and Engineering **Research Council of Canada**

> **Canadian Institute for Advanced Research**

Gordon and Betty Moore Foundation

The most important attributes of a vector in 3-space are {Location, Location, Location}

