CONSTRAINTS ON SUBSTRUCTURE FROM **ULTRA-FAINT DWARF DYNAMICS**

Harikrishnan Ramani University of Delaware 2404.01378, 2311.07654 With Peter Graham

NIGHTMARE SCENARIO

- Our only evidence for dark matter is through its gravitational interactions
- Strong limits on non-gravitational interactions: direct, indirect and colliders
- Nightmare scenario: Gravity is our only hope

STUDYING DM HALOS

- Study dark matter halos of different sizes:
- O Clusters : Limits on self-interactions
- O Galaxy-scale anomalies : hints on self-interactions
- O Dwarf galaxies : limits on ultralight mass
- O Can we go smaller?

DARK MATTER HALOS

Galaxy Clusters

Galaxies

 $\approx 10^{11}$ stars

$\approx 10^7$ to 10^9 stars

Dwarf Galaxies

Ultrafaint Dwarf Galaxies

 $\approx 10^3$ stars

Too Few Stars How to Study?

Primordial Power Spectrum Models of Inflation Ultralight Dark Matter -

Free-streaming scale & enhanced power at high k

Warm dark matter

SIDM - Gravothermal collaps

Early Matter Domination

Long Range Forces

-	Enhanced Dense Substructure
	Presence/absence of
	substructure
	Washes out small scale
	structure
se	Dense Substructure
	Enhanced substructure
	Enhanced substructure

MATTER POWER SPECTRUM

k[Mpc⁻¹]

MATTER POWER SPECTRUM

k[Mpc⁻¹]

MATTER POWER SPECTRUM

k[Mpc⁻¹]

SUBSTRUCTURE

 \bullet Hierarchical structure formation \Longrightarrow small clumps are seeds for

larger halos

Large power at small scales produces Small yet Dense clumps

DYNAMICAL HEATING

- Heat Transfer from clumps to stars Causes the star cluster to expand

Ultra Faint Dwarf Galaxy

- When $M_{\rm clump} \gg M_{\star}$ • KE of clumps = $M_{clump}\sigma^2 \gg$ KE of stars = $M_{\star}\sigma^2$
- Thermodynamics \Longrightarrow

$$H_A = 4\sqrt{2\pi} \frac{G^2 \rho_B \left(m_B \sigma_B^2 - m_A \sigma_A^2\right)}{\left(\sigma_A^2 + \sigma_B^2\right)^{\frac{3}{2}}} \log \Lambda$$

DYNAMICAL HEATING

- Thermodynamics \Longrightarrow
- Heat Transfer from clumps to stars Causes the star cluster to expand

Ultra Faint Dwarf Galaxy

- When $M_{\rm clump} \gg M_{\star}$ • KE of clumps = $M_{clump}\sigma^2 \gg$ KE of stars = $M_{\star}\sigma^2$

$$H_A = 4\sqrt{2\pi} \frac{G^2 \rho_B \left(m_B \sigma_B^2 \right)}{\left(\sigma_A^2 + \sigma_B^2\right)^{\frac{3}{2}}} \log \Lambda$$

DYNAMICAL HEATING

clumps

Galaxy name	Projected $r_{\rm h}$ (pc)	$\sigma_* (\mathrm{km} \mathrm{s}^{-1})$	$L_{\rm V}(L_{\bigodot})$
Wil I	25 ± 6	$4.3^{+2.3}_{-1.3}$	1000
Seg I	29^{+8}_{-5}	$3.9^{+0.8}_{-0.8}$	300
Seg II	35 ± 3	$3.4^{+2.5}_{-1.2}$	900
Ret II	32^{+2}_{-1}	$3.2^{+1.6}_{-0.5}$	1500
Hor I	25^{+9}_{-4}	$4.9^{+2.8}_{-0.9}$	2000

- Not Observed! Stringent Constraints on

$R_{0,\star}[t_{\rm UFD}]^2 \approx (76 {\rm pc})^2 \frac{t_{\rm UFD}}{10^{10} {\rm year}} \frac{f_{\rm clump}}{1} \frac{M_{\rm clump}}{100 M_{\odot}} \frac{\log \Lambda}{10} \frac{18 {\rm km/s}}{\sigma_{\rm clump}} + (R_{0,\star}^i)^2$

11

clumps

Galaxy name	Projected $r_{\rm h}$ (pc)	$\sigma_* (\mathrm{km} \mathrm{s}^{-1})$	$L_{\rm V} \left(L_{\bigodot} \right)$
Wil I	25 ± 6	$4.3^{+2.3}_{-1.3}$	1000
Seg I	29^{+8}_{-5}	$3.9^{+0.8}_{-0.8}$	300
Seg II	35 ± 3	$3.4^{+2.5}_{-1.2}$	900
Ret II	32^{+2}_{-1}	$3.2^{+1.6}_{-0.5}$	1500
Hor I	25^{+9}_{-4}	$4.9^{+2.8}_{-0.9}$	2000

- Not Observed! Stringent Constraints on

DYNAMICAL HEATING

$(76 \text{pc})^2 \frac{t_{\text{UFD}}}{10^{10} \text{year}} \frac{f_{\text{clump}}}{1} \frac{M_{\text{clump}}}{100M_{\odot}} \frac{\log \Lambda}{10} \frac{18 \text{km/s}}{\sigma_{\text{clump}}} + (R_{0,\star}^i)^2$

11

clumps

Galaxy name	Projected r _h (pc)	$\sigma_* (\mathrm{km}\;\mathrm{s}^{-1})$	$L_{\rm V} \left(L_{\bigodot} \right)$
Wil I	25 ± 6	$4.3^{+2.3}_{-1.3}$	1000
Seg I	29^{+8}_{-5}	$3.9^{+0.8}_{-0.8}$	300
Seg II	35 ± 3	$3.4^{+2.5}_{-1.2}$	900
Ret II	32^{+2}_{-1}	$3.2^{+1.6}_{-0.5}$	1500
Hor I	25_4	$4.9^{+2.8}_{-0.9}$	2000

- Not Observed! Stringent Constraints on

11

LIMITS ON PBH

Three Distinct Thermal Populations

Temperatures

$m_{\rm smooth}\sigma_{\rm smooth}^2$ & $m_{\rm MACHO}\sigma_{\rm MACHO}^2$

• Thermodynamics \rightarrow Equilibration

• If $m_{\rm MACHO} \gg m_{\rm smooth}$

MACHOs migrate inward

Three Distinct Thermal Populations

Temperatures

$m_{\rm smooth}\sigma_{\rm smooth}^2$ & $m_{\rm MACHO}\sigma_{\rm MACHO}^2$

• Thermodynamics \rightarrow Equilibration

• If $m_{\rm MACHO} \gg m_{\rm smooth}$

MACHOs migrate inward

stellar core

More heating

Migration increases MACHO density @

stellar core

More heating

Migration increases MACHO density @

PBH LIMITS

 $M_{\rm MACHO}(M_{\odot})$

CLUMPS

 $M_{\rm clump}[M_{\odot}]$

Incorporating survival from tidal effects

NEW LIMITS

 $M_{\rm clump}$: Mass of the clump : Scale density of the clump ρ_s : Mass fraction of DM $f_{\rm clump}$ present in clumps

LIMITS ON THE POWER SPECTRUM

 $k[Mpc^{-1}]$

Ursa Major III/UNIONS 1: The Darkest Galaxy Ever Discovered?

Raphaël Errani,^{1,2} Julio F. Navarro,³ Simon E. T. Smith,³ and Alan W. McConnachie^{4,3}

¹McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA ²Université de Strasbourg, CNRS, Observatoire Astronomique de Strasbourg, UMR 7550, F-67000 Strasbourg, France ³Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 5C2, Canada ⁴NRC Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, BC, V9E 2E7, Canada (Received 2023 October 30; Revised 2024 January 7; Accepted 2024 January 23)

The recently discovered stellar system Ursa Major III/UNIONS 1 (UMa3/U1) is the faintest known Milky Way satellite to date. With a stellar mass of 16^{+6}_{-5} M_{\odot} and a half-light radius of 3 ± 1 pc, it is either the darkest galaxy ever discovered or the faintest self-gravitating star cluster known to orbit the Galaxy. Its line-of-sight velocity dispersion suggests the presence of dark matter, although current measurements are inconclusive because of the unknown contribution to the dispersion of potential binary stars. We use N-body simulations to show that, if self-gravitating, the system could not survive in the Milky Way tidal field for much longer than a single orbit (roughly 0.4 Gyr), which strongly suggests that the system is stabilized by the presence of large amounts of dark matter. If UMa3/U1 formed at the center of a $\sim 10^9 M_{\odot}$ cuspy LCDM halo, its velocity dispersion would

Abstract

- Primordial Power Spectrum Models of Inflation?
- Strongly Interacting Dark Matter
- Atomic dark matter
- Long Range Self-Interactions

LONG RANGE INTERACTIONS

