CONSTRAINTS ON SUBSTRUCTURE FROM ULTRA-FAINT DWARF DYNAMICS

Harikrishnan Ramani University of Delaware 2404.01378, 2311.07654 With Peter Graham

NIGHTMARE SCENARIO

- Our only evidence for dark matter is through its gravitational interactions
- Strong limits on non-gravitational interactions: direct, indirect and colliders
- Nightmare scenario: Gravity is our only hope

STUDYING DM HALOS

- Study dark matter halos of different sizes:
- Clusters : Limits on self-interactions
- Galaxy-scale anomalies : hints on self-interactions
- Dwarf galaxies : limits on ultralight mass
- O Can we go smaller?

DARK MATTER HALOS

Galaxy Clusters

Galaxies

 $\approx 10^{11}$ stars

Galaxies Ultrafaint Dwarf Galaxies

Dwarf

 $\approx 10^7$ to 10^9 stars

 $\approx 10^3$ stars 3

Too Few Stars How to Study?

Primordial Power Spectrum Models of Inflation Ultralight Dark Matter - Free-streaming scale & enhanced power at high k

Warm dark matter

SIDM - Gravothermal collaps

Early Matter Domination

Long Range Forces

MATTER POWER SPECTRUM

MATTER POWER SPECTRUM

MATTER POWER SPECTRUM

SUBSTRUCTURE

Hierarchical structure formation \Longrightarrow small clumps are seeds for

Large power at small scales produces **Small** yet **Dense** clumps

larger halos

- of *A* per unit mass to be of *A* per unit mass to be
- When $M_{\text{clump}} \gg M_{\star}$ • KE of clumps = $M_{\text{clump}}\sigma^2 \gg$
	- KE of stars = $M_{\star} \sigma^2$

Ultra Faint Dwarf Galaxy

DYNAMICAL HEATING

-
- -
- Thermodynamics \Longrightarrow
- Heat Transfer from clumps to stars \bullet Causes the star cluster to expand ⇢*^A ISes* the s *G*²⇢*^B mB*² *^B ^mA*² *A* \sim \sim \sim \sim \sim \sim \sim \sim expand
	-

$$
H_A = 4\sqrt{2\pi} \frac{G^2 \rho_B \left(m_B \sigma_B^2 - m_A \sigma_A^2\right)}{\left(\sigma_A^2 + \sigma_B^2\right)^{\frac{3}{2}}} \log \Lambda
$$

- of *A* per unit mass to be of *A* per unit mass to be
- When $M_{\text{clump}} \gg M_{\star}$ • KE of clumps = $M_{\text{clump}}\sigma^2 \gg$
	- KE of stars = $M_{\star} \sigma^2$

Ultra Faint Dwarf Galaxy

DYNAMICAL HEATING

-
- -
- Thermodynamics \Longrightarrow
- Heat Transfer from clumps to stars \bullet Causes the star cluster to expand ⇢*^A ISes* the s *G*²⇢*^B mB*² *^B ^mA*² *A* \sim \sim \sim \sim \sim \sim \sim \sim expand
	-

$$
H_A = 4\sqrt{2\pi} \frac{G^2 \rho_B \left(m_B \sigma_B^2\right)}{\left(\sigma_A^2 + \sigma_B^2\right)^{\frac{3}{2}}} \log \Lambda
$$

11

-
- Not Observed!
	- Stringent Constraints on clumps
-
-
-

DYNAMICAL HEATING

 $R_{0,\star}[t_{\rm UFD}]^2 \approx (76 \rm pc)$ ² *t* UFD 1010year

f clump 1 *M*clump 100*M*[⊙] $\log \Lambda$ 10 18km/s *σ*clump $+$ $(R_0^i$

log(*R*⁰*,*∗) ∼ *U*(log(10)*,* log(50))*.* (6)

11

-
- Not Observed!
	- Stringent Constraints on clumps
-
-

DYNAMICAL HEATING

f clump 1 *M*clump 100*M*[⊙] $\log \Lambda$ 10 18km/s *σ*clump $+$ $(R_0^i$

log(*R*⁰*,*∗) ∼ *U*(log(10)*,* log(50))*.* (6)

11

-
- Not Observed!
	- Stringent Constraints on clumps
-
-

log(*R*⁰*,*∗) ∼ *U*(log(10)*,* log(50))*.* (6)

lines), or from requiring that the timescale to double in area (increase by [√]2 in ^rh) is longer than the cluster age (blue lines). LIMITS ON PBH

•Three Distinct Thermal Populations

•Temperatures

$\cdot m_{\text{smooth}} \sigma_{\text{smooth}}^2$ $m_{\text{smooth}}\sigma_{\text{smooth}}^2$ & $m_{\text{MACHO}}\sigma_{\text{MACHO}}^2$

\cdot Thermodynamics \rightarrow Equilibration

\cdot If $m_{\text{MACHO}} \gg m_{\text{smooth}}$

• MACHOs migrate inward

•Three Distinct Thermal Populations

•Temperatures

$\cdot m_{\text{smooth}} \sigma_{\text{smooth}}^2$ $m_{\text{smooth}}\sigma_{\text{smooth}}^2$ & $m_{\text{MACHO}}\sigma_{\text{MACHO}}^2$

\cdot Thermodynamics \rightarrow Equilibration

\cdot If $m_{\text{MACHO}} \gg m_{\text{smooth}}$

• MACHOs migrate inward

•Migration increases MACHO density @

stellar core

•More heating

•Migration increases MACHO density @

stellar core

•More heating

 $M_{\text{MACHO}}(M_{\odot})$

PBH LIMITS

CLUMPS

 $M_{\text{clump}}[M_{\odot}]$

Incorporating survival from tidal effects

NEW LIMITS

 $M_{\rm clump}$: Mass of the clump : Scale density of the clump : Mass fraction of DM present in clumps P_{S} *f* clump

LIMITS ON THE POWER SPECTRUM

Ursa Major III/UNIONS 1: The Darkest Galaxy Ever Discovered?

Raphaël Errani, ^{1, 2} Julio F. Navarro, ³ Simon E. T. Smith, ³ and Alan W. McConnachie^{4, 3}

¹McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA ²Université de Strasbourg, CNRS, Observatoire Astronomique de Strasbourg, UMR 7550, F-67000 Strasbourg, France ³Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 5C2, Canada ⁴NRC Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, BC, V9E 2E7, Canada *(Received 2023 October 30; Revised 2024 January 7; Accepted 2024 January 23)*

The recently discovered stellar system Ursa Major III/UNIONS 1 (UMa3/U1) is the faintest known Milky Way satellite to date. With a stellar mass of 16^{+6}_{-5} M_o and a half-light radius of 3 ± 1 pc, it is either the darkest galaxy ever discovered or the faintest self-gravitating star cluster known to orbit the Galaxy. Its line-of-sight velocity dispersion suggests the presence of dark matter, although current measurements are inconclusive because of the unknown contribution to the dispersion of potential binary stars. We use N -body simulations to show that, if self-gravitating, the system could not survive in the Milky Way tidal field for much longer than a single orbit (roughly 0*.*4 Gyr), which strongly suggests that the system is stabilized by the presence of large amounts of dark matter. If UMa3/U1 formed at the center of a $\sim 10^9$ M_o cuspy LCDM halo, its velocity dispersion would be predicted to be of order \sim 1 km s1. This is roughly consistent with the current with the current estimat
In this is roughly consistent with the current estimate, which, neglecting with the current estimate, which, n

Abstract

- Primordial Power Spectrum Models of Inflation?
- Strongly Interacting Dark Matter
- Atomic dark matter
- Long Range Self-Interactions

ing a↵ected by the new force. While this scenario appears LONG RANGE INTERACTIONS

