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NIGHTMARE SCENARIO

• Our only evidence for dark matter is through its 
gravitational interactions 

• Strong limits on non-gravitational interactions: direct, 
indirect and colliders 

• Nightmare scenario: Gravity is our only hope



• Study dark matter halos of different sizes: 

 Clusters :  Limits on self-interactions 

 Galaxy-scale anomalies : hints on self-interactions 

 Dwarf galaxies : limits on ultralight mass 

 Can we go smaller?

STUDYING DM HALOS



4

DARK MATTER HALOS
Galaxy Clusters 

Galaxies
Dwarf 

Galaxies Ultrafaint 
Dwarf 

Galaxies

Too Few Stars 

How to Study?

 stars≈ 1011

 stars≈ 107 to 109

 stars≈ 103



WHY CARE?
Primordial Power Spectrum - 

Models of Inflation Enhanced Dense Substructure

Ultralight Dark Matter -  
Free-streaming scale & 

enhanced power at high k

Presence/absence of 
substructure

Warm dark matter Washes out small scale 
structure

SIDM - Gravothermal collapse Dense Substructure

Early Matter Domination Enhanced substructure

Long Range Forces Enhanced substructure
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SUBSTRUCTURE

 Large power at small scales produces Small yet Dense clumps

 Hierarchical structure formation  small clumps are seeds for 

larger halos

⟹
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• When   

• KE of clumps =             
KE of stars = 

• Thermodynamics  
• Heat Transfer from clumps to stars
• Causes the star cluster to expand

Mclump ≫ M⋆

Mclumpσ2 ≫
M⋆σ2

⟹

Ultra Faint Dwarf Galaxy

DYNAMICAL HEATING
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C. Relation to Dynamical Friction

Up until this point we have calculated the heat transfer between gases A and B from the net integrated e↵ect of
all the individual gravitational scatterings between pairs of particles. We will now comment on the relation between
this and the well-known dynamical friction formula. If A is hotter than B, then an A particle will slow down as it is
passing through the B gas. The dynamical friction formula for the slowdown of individual A particles in a bath of B
is
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In the special case of mA � mB this reproduces Eqn. (8).
But clearly if we are not in the limit mA � mB then the dynamical friction formula does not give the same cooling

rate as Eqn. (8), even when A is hotter than B, namely mA�
2
A � mB�

2
B . We can see that the dynamical friction

formula does not give the correct answer in this case and that in fact Eqn. (8) is the fully correct answer in the general
case. This is because the dynamical friction formula only uses the first-order di↵usion coe�cient. Including both first-
and second-order di↵usion coe�cients the average heating rate per unit mass of an A particle is (see [33])
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Not Observed! 

Stringent Constraints on 
clumps

DYNAMICAL HEATING

4 Q. Zhu et al.

Table 1. A sample of observed compact ultra-faint dwarf galaxies used in
our modelling from Brandt (2016).

Galaxy name Projected rh (pc) σ ∗ (km s−1) LV (L⊙)

Wil I 25 ± 6 4.3+2.3
−1.3 1000

Seg I 29+8
−5 3.9+0.8

−0.8 300

Seg II 35 ± 3 3.4+2.5
−1.2 900

Ret II 32+2
−1 3.2+1.6

−0.5 1500

Hor I 25+9
−4 4.9+2.8

−0.9 2000

We use the top five ultra-faint dwarf galaxies compiled by Brandt
(2016), which have measurements of both size and stellar velocity
dispersion available. The data are repeated here in Table 1 for con-
venience but we refer the readers to Brandt (2016) for details and
references of each measurement. Note that there are discrepancies
in the reported half-mass radius of the two newly discovered Ret II
and Hor I between Koposov et al. (2015) and Bechtol et al. (2015).
In each case, we have chosen the smaller value of the two mea-
surements. The reason for such a sample is based on the implicit
assumption (inherited from Brandt 2016) that these five galaxies
form a distinct class of faint dwarfs with similar size and velocity
dispersion, which can be compared to a single theoretical model.
Lastly, we apply a factor of 1.3 to de-project the observed half-mass
radius to 3D following Wolf et al. (2010).

2.2.2 Selections of prior distributions

Total dark matter mass MDM: Compact ultra-faint dwarf galaxies
from our sample have the least amount of stars (∼1000 L⊙) ever
known, but their total mass remains unknown. It was suggested that
they may reside in the least massive haloes where atomic cooling
is efficient, and that their total mass is around 109 M⊙ (Sawala
et al. 2015; Wheeler et al. 2015; Zhu et al. 2016), since such a halo
mass is consistent with the M∗–MDM relations at the low mass end
(Garrison-Kimmel et al. 2017). Recently, Ma et al. (2017) resolved
the formation of such galaxies in their simulations, and reported
that the least massive halo, which has a mass of 108M⊙ at z = 5,
had already stopped star formation since z = 8. On the other hand,
Read, Agertz & Collins (2016) modelled isolated dwarf galaxies
and found that haloes with a total mass of 108M⊙ were able to
match several dwarf satellites of the Milky Way.

Therefore, we choose a weakly informative prior of MDM, which
follows a log-normal distribution:

log(MDM) ∼ N (9, 0.5). (4)

The choice of this prior is well justified in that the physics in-
volved is relatively straightforward. These low-mass galaxies must
be just massive enough, above the thresholds set by atomic cool-
ing and UV background radiation, for stars to form (e.g. Okamoto,
Gao & Theuns 2008; Gnedin & Kaurov 2014). The width of the
distribution also ensures that haloes down to 2–3 × 108 M⊙ are
covered.

DM scale radius R0, DM:From the discussion below (Section 3.1),
we argue that the inner density profile of the halo will form a core
(γ = 0) due to relaxation effect. However, the size of the scale
radius needs to be treated as another free parameter in our model.
This is largely due to a lack of self-consistent collisional N-body
simulations from cosmological initial conditions. The assumption
that the characteristic scales of the PBH-DM haloes are similar to
the #CDM models could lead to serious systematics. Thus, we

adopt a log-uniform distribution of R∗, DM for the range from 100 to
2000 pc:

log(R∗,DM) ∼ U(log(100), log(2000)). (5)

Stellar scale radius R0, ∗:The heating of stars due to two-body
relaxation increases the scale radius of stellar distribution roughly
as R∗ ∼ t0.5 (Brandt 2016), which indicates that the present-day
size does not depend sensitively on the initial value of R0, ∗. We
thus use a log-uniform distribution for R0, ∗ for the range from 10 to
50 pc.

log(R0,∗) ∼ U(log(10), log(50)). (6)

The lower limit corresponds to the largest Galactic globular clus-
ters and the upper limit corresponds to the average size of the
currently observed compact ultra-faint dwarfs.

Primordial BH mass MBH: Lastly, the mass of the PBHs is not
well constrained (Carr et al. 2017). PBHs above 100 M⊙ can be
ruled out by CMB observation and the Galactic wide binaries (see
Carr et al. 2016). However, since we are most interested in the range
of [1, 100] M⊙, we assume a log-uniformly distribution for MBH in
this range.

3 R ESULTS

3.1 Cusp-to-core transition in PBH-DM haloes from
relaxation effect

In a CDM halo, the density profile usually shows a central density
cusp with a slope in the range of 0 < γ < 2, and the DM velocity
dispersion peaks at the scale radius. However, if the DM is composed
of PBHs, two-body relaxation will soften the central cusp, and as a
result of the collisional heating, the velocity dispersion in the central
region will increase while the density will drop at the same time.
This process leads to the rapid formation of a core (Quinlan 1996)
as a result of ‘temperature inversion’, in which the colder dense
cusp will be heated by a hotter envelope.

Fig. 1 illustrates how this relaxation effect transforms a PBH-DM
halo from a γ = 1 cusp to a γ = 0 core. The DM halo has a mass
of 2 × 109 M⊙ composed of 30 M⊙ PBHs, and an initial cuspy
density profile of γ = 1 and R0, DM = 500 pc. Collisional relax-
ation quickly removes the central density cusp and increases the
central velocity dispersion. After 12 Gyr, this PBH-DM halo can be
approximated by a less massive (109M⊙) one with a core density
profile of γ = 0 and a characteristic scale radius of R0, DM = 160 pc.
In addition, the evolution of an NFW halo with a scale radius of
300 pc and truncated at 10 kpc is shown in Fig. 1 for comparison.
The scale radius is chosen to match the initial cuspy Dehnen pro-
file. Within the central 200 pc, both the density and the velocity
dispersion profiles of the NFW halo match perfectly with those of
the cuspy Dehnen model. While the NFW profile leads different
asymptotic behaviour towards large r, but the dynamical region we
focus in this study is within the central ∼ 100 pc, where both NFW
and the cuspy Dehnen profiles produce the same results.

In order to determine the time-scale of the transition from cusp-
to-core profiles, we set up cuspy DM haloes consisting of 30 M⊙
PBHs with a total mass in the range from 105 to 109 M⊙ at redshift
z = 10, based on the mass-concentration relation from Diemer &
Kravtsov (2015). We evolve the PBH-DM haloes using the FP code
PHASEFLOW. These simulations show that the collisional relaxation
effect removes the central cusp almost instantaneously, and the DM
core grows quickly in size. For instance, it takes only ∼0.05 Gyr for
all the haloes to develop a core of ∼10 pc, and ∼0.18 Gyr to reach

MNRAS 476, 2–11 (2018)

D
ow

nloaded from
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ic.oup.com
/m
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In each case, we have chosen the smaller value of the two mea-
surements. The reason for such a sample is based on the implicit
assumption (inherited from Brandt 2016) that these five galaxies
form a distinct class of faint dwarfs with similar size and velocity
dispersion, which can be compared to a single theoretical model.
Lastly, we apply a factor of 1.3 to de-project the observed half-mass
radius to 3D following Wolf et al. (2010).

2.2.2 Selections of prior distributions

Total dark matter mass MDM: Compact ultra-faint dwarf galaxies
from our sample have the least amount of stars (∼1000 L⊙) ever
known, but their total mass remains unknown. It was suggested that
they may reside in the least massive haloes where atomic cooling
is efficient, and that their total mass is around 109 M⊙ (Sawala
et al. 2015; Wheeler et al. 2015; Zhu et al. 2016), since such a halo
mass is consistent with the M∗–MDM relations at the low mass end
(Garrison-Kimmel et al. 2017). Recently, Ma et al. (2017) resolved
the formation of such galaxies in their simulations, and reported
that the least massive halo, which has a mass of 108M⊙ at z = 5,
had already stopped star formation since z = 8. On the other hand,
Read, Agertz & Collins (2016) modelled isolated dwarf galaxies
and found that haloes with a total mass of 108M⊙ were able to
match several dwarf satellites of the Milky Way.

Therefore, we choose a weakly informative prior of MDM, which
follows a log-normal distribution:

log(MDM) ∼ N (9, 0.5). (4)

The choice of this prior is well justified in that the physics in-
volved is relatively straightforward. These low-mass galaxies must
be just massive enough, above the thresholds set by atomic cool-
ing and UV background radiation, for stars to form (e.g. Okamoto,
Gao & Theuns 2008; Gnedin & Kaurov 2014). The width of the
distribution also ensures that haloes down to 2–3 × 108 M⊙ are
covered.

DM scale radius R0, DM:From the discussion below (Section 3.1),
we argue that the inner density profile of the halo will form a core
(γ = 0) due to relaxation effect. However, the size of the scale
radius needs to be treated as another free parameter in our model.
This is largely due to a lack of self-consistent collisional N-body
simulations from cosmological initial conditions. The assumption
that the characteristic scales of the PBH-DM haloes are similar to
the #CDM models could lead to serious systematics. Thus, we

adopt a log-uniform distribution of R∗, DM for the range from 100 to
2000 pc:

log(R∗,DM) ∼ U(log(100), log(2000)). (5)

Stellar scale radius R0, ∗:The heating of stars due to two-body
relaxation increases the scale radius of stellar distribution roughly
as R∗ ∼ t0.5 (Brandt 2016), which indicates that the present-day
size does not depend sensitively on the initial value of R0, ∗. We
thus use a log-uniform distribution for R0, ∗ for the range from 10 to
50 pc.

log(R0,∗) ∼ U(log(10), log(50)). (6)

The lower limit corresponds to the largest Galactic globular clus-
ters and the upper limit corresponds to the average size of the
currently observed compact ultra-faint dwarfs.

Primordial BH mass MBH: Lastly, the mass of the PBHs is not
well constrained (Carr et al. 2017). PBHs above 100 M⊙ can be
ruled out by CMB observation and the Galactic wide binaries (see
Carr et al. 2016). However, since we are most interested in the range
of [1, 100] M⊙, we assume a log-uniformly distribution for MBH in
this range.

3 R ESULTS

3.1 Cusp-to-core transition in PBH-DM haloes from
relaxation effect

In a CDM halo, the density profile usually shows a central density
cusp with a slope in the range of 0 < γ < 2, and the DM velocity
dispersion peaks at the scale radius. However, if the DM is composed
of PBHs, two-body relaxation will soften the central cusp, and as a
result of the collisional heating, the velocity dispersion in the central
region will increase while the density will drop at the same time.
This process leads to the rapid formation of a core (Quinlan 1996)
as a result of ‘temperature inversion’, in which the colder dense
cusp will be heated by a hotter envelope.

Fig. 1 illustrates how this relaxation effect transforms a PBH-DM
halo from a γ = 1 cusp to a γ = 0 core. The DM halo has a mass
of 2 × 109 M⊙ composed of 30 M⊙ PBHs, and an initial cuspy
density profile of γ = 1 and R0, DM = 500 pc. Collisional relax-
ation quickly removes the central density cusp and increases the
central velocity dispersion. After 12 Gyr, this PBH-DM halo can be
approximated by a less massive (109M⊙) one with a core density
profile of γ = 0 and a characteristic scale radius of R0, DM = 160 pc.
In addition, the evolution of an NFW halo with a scale radius of
300 pc and truncated at 10 kpc is shown in Fig. 1 for comparison.
The scale radius is chosen to match the initial cuspy Dehnen pro-
file. Within the central 200 pc, both the density and the velocity
dispersion profiles of the NFW halo match perfectly with those of
the cuspy Dehnen model. While the NFW profile leads different
asymptotic behaviour towards large r, but the dynamical region we
focus in this study is within the central ∼ 100 pc, where both NFW
and the cuspy Dehnen profiles produce the same results.

In order to determine the time-scale of the transition from cusp-
to-core profiles, we set up cuspy DM haloes consisting of 30 M⊙
PBHs with a total mass in the range from 105 to 109 M⊙ at redshift
z = 10, based on the mass-concentration relation from Diemer &
Kravtsov (2015). We evolve the PBH-DM haloes using the FP code
PHASEFLOW. These simulations show that the collisional relaxation
effect removes the central cusp almost instantaneously, and the DM
core grows quickly in size. For instance, it takes only ∼0.05 Gyr for
all the haloes to develop a core of ∼10 pc, and ∼0.18 Gyr to reach
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Table 1. A sample of observed compact ultra-faint dwarf galaxies used in
our modelling from Brandt (2016).

Galaxy name Projected rh (pc) σ ∗ (km s−1) LV (L⊙)

Wil I 25 ± 6 4.3+2.3
−1.3 1000

Seg I 29+8
−5 3.9+0.8

−0.8 300

Seg II 35 ± 3 3.4+2.5
−1.2 900

Ret II 32+2
−1 3.2+1.6

−0.5 1500

Hor I 25+9
−4 4.9+2.8

−0.9 2000

We use the top five ultra-faint dwarf galaxies compiled by Brandt
(2016), which have measurements of both size and stellar velocity
dispersion available. The data are repeated here in Table 1 for con-
venience but we refer the readers to Brandt (2016) for details and
references of each measurement. Note that there are discrepancies
in the reported half-mass radius of the two newly discovered Ret II
and Hor I between Koposov et al. (2015) and Bechtol et al. (2015).
In each case, we have chosen the smaller value of the two mea-
surements. The reason for such a sample is based on the implicit
assumption (inherited from Brandt 2016) that these five galaxies
form a distinct class of faint dwarfs with similar size and velocity
dispersion, which can be compared to a single theoretical model.
Lastly, we apply a factor of 1.3 to de-project the observed half-mass
radius to 3D following Wolf et al. (2010).

2.2.2 Selections of prior distributions

Total dark matter mass MDM: Compact ultra-faint dwarf galaxies
from our sample have the least amount of stars (∼1000 L⊙) ever
known, but their total mass remains unknown. It was suggested that
they may reside in the least massive haloes where atomic cooling
is efficient, and that their total mass is around 109 M⊙ (Sawala
et al. 2015; Wheeler et al. 2015; Zhu et al. 2016), since such a halo
mass is consistent with the M∗–MDM relations at the low mass end
(Garrison-Kimmel et al. 2017). Recently, Ma et al. (2017) resolved
the formation of such galaxies in their simulations, and reported
that the least massive halo, which has a mass of 108M⊙ at z = 5,
had already stopped star formation since z = 8. On the other hand,
Read, Agertz & Collins (2016) modelled isolated dwarf galaxies
and found that haloes with a total mass of 108M⊙ were able to
match several dwarf satellites of the Milky Way.

Therefore, we choose a weakly informative prior of MDM, which
follows a log-normal distribution:

log(MDM) ∼ N (9, 0.5). (4)

The choice of this prior is well justified in that the physics in-
volved is relatively straightforward. These low-mass galaxies must
be just massive enough, above the thresholds set by atomic cool-
ing and UV background radiation, for stars to form (e.g. Okamoto,
Gao & Theuns 2008; Gnedin & Kaurov 2014). The width of the
distribution also ensures that haloes down to 2–3 × 108 M⊙ are
covered.

DM scale radius R0, DM:From the discussion below (Section 3.1),
we argue that the inner density profile of the halo will form a core
(γ = 0) due to relaxation effect. However, the size of the scale
radius needs to be treated as another free parameter in our model.
This is largely due to a lack of self-consistent collisional N-body
simulations from cosmological initial conditions. The assumption
that the characteristic scales of the PBH-DM haloes are similar to
the #CDM models could lead to serious systematics. Thus, we

adopt a log-uniform distribution of R∗, DM for the range from 100 to
2000 pc:

log(R∗,DM) ∼ U(log(100), log(2000)). (5)

Stellar scale radius R0, ∗:The heating of stars due to two-body
relaxation increases the scale radius of stellar distribution roughly
as R∗ ∼ t0.5 (Brandt 2016), which indicates that the present-day
size does not depend sensitively on the initial value of R0, ∗. We
thus use a log-uniform distribution for R0, ∗ for the range from 10 to
50 pc.

log(R0,∗) ∼ U(log(10), log(50)). (6)

The lower limit corresponds to the largest Galactic globular clus-
ters and the upper limit corresponds to the average size of the
currently observed compact ultra-faint dwarfs.

Primordial BH mass MBH: Lastly, the mass of the PBHs is not
well constrained (Carr et al. 2017). PBHs above 100 M⊙ can be
ruled out by CMB observation and the Galactic wide binaries (see
Carr et al. 2016). However, since we are most interested in the range
of [1, 100] M⊙, we assume a log-uniformly distribution for MBH in
this range.

3 R ESULTS

3.1 Cusp-to-core transition in PBH-DM haloes from
relaxation effect

In a CDM halo, the density profile usually shows a central density
cusp with a slope in the range of 0 < γ < 2, and the DM velocity
dispersion peaks at the scale radius. However, if the DM is composed
of PBHs, two-body relaxation will soften the central cusp, and as a
result of the collisional heating, the velocity dispersion in the central
region will increase while the density will drop at the same time.
This process leads to the rapid formation of a core (Quinlan 1996)
as a result of ‘temperature inversion’, in which the colder dense
cusp will be heated by a hotter envelope.

Fig. 1 illustrates how this relaxation effect transforms a PBH-DM
halo from a γ = 1 cusp to a γ = 0 core. The DM halo has a mass
of 2 × 109 M⊙ composed of 30 M⊙ PBHs, and an initial cuspy
density profile of γ = 1 and R0, DM = 500 pc. Collisional relax-
ation quickly removes the central density cusp and increases the
central velocity dispersion. After 12 Gyr, this PBH-DM halo can be
approximated by a less massive (109M⊙) one with a core density
profile of γ = 0 and a characteristic scale radius of R0, DM = 160 pc.
In addition, the evolution of an NFW halo with a scale radius of
300 pc and truncated at 10 kpc is shown in Fig. 1 for comparison.
The scale radius is chosen to match the initial cuspy Dehnen pro-
file. Within the central 200 pc, both the density and the velocity
dispersion profiles of the NFW halo match perfectly with those of
the cuspy Dehnen model. While the NFW profile leads different
asymptotic behaviour towards large r, but the dynamical region we
focus in this study is within the central ∼ 100 pc, where both NFW
and the cuspy Dehnen profiles produce the same results.

In order to determine the time-scale of the transition from cusp-
to-core profiles, we set up cuspy DM haloes consisting of 30 M⊙
PBHs with a total mass in the range from 105 to 109 M⊙ at redshift
z = 10, based on the mass-concentration relation from Diemer &
Kravtsov (2015). We evolve the PBH-DM haloes using the FP code
PHASEFLOW. These simulations show that the collisional relaxation
effect removes the central cusp almost instantaneously, and the DM
core grows quickly in size. For instance, it takes only ∼0.05 Gyr for
all the haloes to develop a core of ∼10 pc, and ∼0.18 Gyr to reach
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Fig. 2.— MACHO constraints from the survival of the star cluster near the core of Eridanus II, assuming a cluster age of 3 Gyr (left
panel) and 12 Gyr (right panel). The units for the dark matter density ρ and velocity dispersion σ, are M⊙ pc−3 and kms−1, respectively.
The limits come from requiring that the timescale to grow from rh,0 = 2 pc to the observed rh = 13 pc is longer than the cluster age (red

lines), or from requiring that the timescale to double in area (increase by
√
2 in rh) is longer than the cluster age (blue lines).

TABLE 1
Properties of Compact Ultra-Faint Dwarf Galaxies

Name rh
† LV ρ1/2 σ∗ Ref.††

pc L⊙ M⊙ pc−3 km s−1

Wil I 25± 6 1000 4 4.3+2.3
−1.3 1,2

Seg I 29+8
−5 300 3 3.9± 0.8 2,3

Seg II 35± 3 900 1 3.4+2.5
−1.2 4

Ret II 32+2
−1/55

+5
−5 1500* 2 3.2+1.6

−0.5 5,6,7

Hor I 30+4
−3/60

+76
−30 2000* 5 4.9+2.8

−0.9 5,6,7

Pic I 29+9
−4/43

+153
−21 2000* 5,6

Pho II 26+6
−4/33

+20
−11 1500* 5,6

Ind I 37+13
−8 /12+2

−2 1000* 5,6

Eri III 14+13
−3 /11+8

−5 500* 5,6

Dra II 19+8
−6 1000 8

Eri II** 13± 1 2000 9
† Where two values are given, the first is from Koposov et al.
(2015a) and the second from Bechtol et al. (2015).
†† References abbreviated as: 1 (Martin et al. 2007); 2
(Martin et al. 2008); 3 (Simon et al. 2011); 4 (Belokurov et al.
2009); 5 (Bechtol et al. 2015); 6 (Koposov et al. 2015a); 7
(Koposov et al. 2015b); 8 (Laevens et al. 2015); 9 (Crnojević et al.
2016)
* Geometric means of Koposov et al. (2015a) and Bechtol et al.
(2015), rounded to 500 L⊙.
** Values are for the central star cluster only.

dispersions of 5 and 10 km s−1. The observed ultra-faint
dwarfs lie within this range; with one-dimensional veloc-
ity dispersions between 3 and 6 km s−1 (Table 1). The
survival of the compact ultra-faint dwarfs listed in Table
1 rules out dark matter consisting entirely of MACHOs
of mass !10 M⊙.

4. DISCUSSION AND CONCLUSIONS

The star cluster in the core of the newly discovered
dwarf galaxy Eridanus II provides strong constraints on
a region of MACHO parameter space difficult to probe
with either microlensing or wide Galactic binaries; the
population of compact, ultra-faint dwarfs provides sim-
ilar, independent limits. Figure 4 compares the con-
straints derived in Section 3 using conservative assump-

Fig. 3.—MACHO constraints from the observed sizes of compact
ultra-faint dwarf galaxies, assuming a stellar mass of 3000 M⊙, a
current half-light radius rh = 30 pc, and an age of 10 Gyr. The
units for the dark matter density ρ and velocity dispersion σ, are
M⊙ pc−3 and km s−1, respectively. The limits come from requiring
that the timescale to grow from rh,0 = 2 pc to rh = 30 pc is longer
than 10 Gyr (red lines), or from requiring that the timescale to
double in area (increase by

√
2 in rh) is longer than 10 Gyr (blue

lines).

tions about the dark matter halos to constraints from
microlensing (Alcock et al. 2001; Tisserand et al. 2007)
and wide Galactic halo binaries (Quinn et al. 2009). The
kinematics of the Galactic disk provide an independent
limit on the abundance of very massive (!107 M⊙) MA-
CHOs (Lacey & Ostriker 1985). For dark matter ha-
los consistent with measured dwarf properties (Table 1),
MACHO dark matter is ruled out over the entire open
region of masses. If Eri II’s cluster is old and was ini-
tially puffier than Galactic clusters, it provides especially
strong limits.
While Eri II’s cluster likely provides the best limits on

MACHOs from ∼10 M⊙ up to thousands of M⊙, there
are ways to evade its constraints. The cluster, for exam-
ple, could have recently spiraled into the center of Eri II
due to dynamical friction, having spent most of its life
as a compact cluster in a low-density MACHO environ-
ment. However, the inspiral timescale is inversely pro-
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FIG. 5: Our constraints on clump parameter space in clump mass Mclump, clump scale density ⇢s, and fraction of
dark matter made up of clumps fclump. In the left plot, the di↵erent lines represent contours of di↵erent fraction

fclump in the ⇢s - Mclump plane. In the right plot the di↵erent lines represent contours of di↵erent ⇢s in the fclump -
Mclump plane.

FIG. 6: Our limits (blue) on the power spectrum of adiabatic primordial density perturbations P (k) vs the
wave-number k. These are significantly stronger than existing bounds in this range from FIRAS (red) via

µ-distortions and y-distortions [43]. At longer length scales the power is measured by CMB (green) [44] and
Lyman-↵ (orange) [45]. For comparison we also show the nearly scale invariant power measured by Planck

extrapolated to higher k (black-dashed). The blue shaded region corresponds to the top-hat window function with
the Press-Schechter [46] multiplicity function and � = 200. In the Left panel, we illustrate the uncertainty

associated with a choice of filter, the Gaussian (dot-dashed blue), as well as an alternate choice of � = 600. In the
Right panel, we show alternate choices of the multiplicity function: Sheth-Tormen [47] (Dashed) and Watson et

al. [48] (Dot-dashed).

The halo mass function at a redshift z is given by,

dnclump(z)

d lnMclump
= f(�)

⇢M (z)

Mclump

d ln��1

d lnMclump
(40)

Here, nclump is the number density of clumps, with clump
mass Mclump and ⇢M (z) is the non-relativistic matter
density at redshift z. Since R is a comoving scale, we set
Mclump = 4

3⇡R
3
⇢crit⌦m, where ⇢crit is the energy den-

sity of the universe today and ⌦m is the matter frac-
tion today. This can be used to write � as a function of
Mclump. The multiplicity function f(�) is chosen to be

that given by Press-Schechter [46] for limit setting pur-
poses. We also provide limits with other choices such as
Sheth-Tormen [47] and Watson et al [48] in order to show
how much our limits depend on this choice.

Now that we have the number density given a primor-
dial power spectrum, we can compare it to the limits
derived in the previous section, to finally obtain the lim-
its on primordial power. Our procedure for setting this
limit is as follows. Given a primordial power spectrum
P (k), we obtain the fraction of DM that has collapsed
into clumps with masses within a decade of Mclump mass

Incorporating survival from tidal effects
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Abstract

The recently discovered stellar system Ursa Major III/UNIONS 1 (UMa3/U1) is the faintest known Milky
Way satellite to date. With a stellar mass of 16+6

�5 M� and a half-light radius of 3 ± 1 pc, it is either the darkest
galaxy ever discovered or the faintest self-gravitating star cluster known to orbit the Galaxy. Its line-of-sight
velocity dispersion suggests the presence of dark matter, although current measurements are inconclusive because
of the unknown contribution to the dispersion of potential binary stars. We use #-body simulations to show
that, if self-gravitating, the system could not survive in the Milky Way tidal field for much longer than a single
orbit (roughly 0.4 Gyr), which strongly suggests that the system is stabilized by the presence of large amounts of
dark matter. If UMa3/U1 formed at the center of a ⇠109 M� cuspy LCDM halo, its velocity dispersion would
be predicted to be of order ⇠1 km s�1. This is roughly consistent with the current estimate, which, neglecting
binaries, places flos in the range 1 – 4 km s�1. Because of its dense cusp, such a halo should be able to survive the
Milky Way tidal field, keeping UMa3/U1 relatively unscathed until the present time. This implies that UMa3/U1
is plausibly the faintest and densest dwarf galaxy satellite of the Milky Way, with important implications for
alternative dark matter models and for the minimum halo mass threshold for luminous galaxy formation in the
LCDM cosmology. Our results call for multi-epoch high-resolution spectroscopic follow-up to confirm the dark
matter content of this extraordinary system.

Unified Astronomy Thesaurus concepts: Cold dark matter (265); Dwarf spheroidal galaxies (420); Low surface
brightness galaxies (940); the Milky Way (1054); N-body simulations (1083); Star clusters (1567); Tidal
disruption (1696)

1. Introduction

Ultrafaint dwarf galaxies (UFDs) are stellar systems with
"¢ < 105 M� , fainter than many globular clusters (GCs) but
gravitationally bound by the presence of large amounts of dark
matter. They constitute direct probes not only of the formation
mechanisms that govern the extreme faint-end of the galaxy
luminosity function, but also of the structure of low-mass dark
matter halos and, indirectly, of the nature of dark matter (see,
e.g., Bullock & Boylan-Kolchin 2017; Simon 2019; Sales et al.
2022, for recent reviews).

The overall abundance of UFDs reflects the number of
low-mass dark matter halos able to harbor luminous galaxies,
placing important constraints on models where the physical
nature of dark matter leads to the suppression of low-mass
halos, such as in “warm dark matter” (WDM; e.g. Bode
et al. 2001; Lovell et al. 2014) or “fuzzy dark matter” (FDM;
e.g. Hu et al. 2000) models. For cold dark matter (CDM)
models, where the number of low-mass halos is expected
to be overwhelmingly larger than the number of UFDs, the

E-mail: errani@cmu.edu

abundance of faint systems probes the mass threshold between
halos that remain “dark” (starless) and those massive enough
for luminous galaxy formation to proceed (Simon & Geha
2007; Ferrero et al. 2012; Peñarrubia et al. 2012; Fattahi et al.
2018).

This threshold is still being actively discussed, with some
studies suggesting a relatively high virial1 halo mass threshold
(⇠109 M�; Benitez-Llambay & Frenk 2020; Pereira-Wilson
et al. 2023), determined primarily by the ability of hydrogen
to cool in halos photoheated by the ambient UV background
(Efstathiou 1992; Quinn et al. 1996; Gnedin 2000), and other
studies arguing for a much lower mass threshold, in order to
accommodate the sheer number of observed UFDs plus those
still likely missing from our currently incomplete inventory of
Milky Way satellites (e.g., Nadler et al. 2021, and references
therein).

1 Virial quantities are identified by a “200” subscript and defined at or
within the virial radius, A200, which encloses a mass a mean average
density equal to 200 times the critical density for closure. At I = 0,
dcrit = 3�2

0 /(8c⌧) , with �0 = 67km s�1Mpc�1 (Planck Collaboration
et al. 2020).
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than order unity, i.e.

|Vnew(r⇤A)|

m
. |Vg(r⇤A)|

m
= G

Z
d3r

⇢A(r)

|r� r⇤A|
. (13)

where Vnew(r⇤A) is given in Eq. (7). Before we proceed
further, let us obtain an order-of-magnitude estimate of
Eq. (7) in order to understand its scaling behavior. A
simple approximation for the potential per unit mass at
radius r⇤A can obtained from arguments similar to Eq. (9)
to obtain
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Requiring this to be greater than Vg ⇠ G⇢A(r⇤A) (r
⇤
A)
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gives

↵ & 1 +
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(15)

which is very similar to Eq. (12).
While the order-of-magnitude estimates match for the

two observations, numerical evaluation shows that the
constraint obtained from the non-observation of the sep-
aration of dark matter and the stellar population is
stronger. This occurs primarily from the fact that even
a small mismatch between aDM and ag results in a sep-
aration of O (r⇤A), whereas this separation is constrained
to be a tiny fraction of r⇤A. In the spirit of staying
conservative—e.g. with respect to additional interactions
between dark matter and the Standard Model or to ef-
fects of substructure which might suppress the observa-
tion in Section IIA—we use the weaker bound obtained
from numerically evaluating the bound in Eq. (13). This
conservative constraint is plotted in Fig. 1.

There are several complications to this analytical de-
scription of the collision in the presence of a new force.
We discuss them over the next several subsections.

C. Halo Density Profiles

We default to NFW profiles for both clusters in this
work due to their widespread use, but marginally bet-
ter lensing fits are, in fact, obtained using King profiles
[27]. This leads to only small changes in the result of
numerically evaluating the bound in Eq. (13), as seen
in Fig. 1. The minimal dependence on profile choice is
explained by the scaling arguments that lead to Eq. (9):
any power-law profile with length scale r⇤A � � will lead

to accelerations and potentials which scale as (�/r⇤A)
2 for

small �.

D. Substructure

A related caveat to our estimate above is that it as-
sumes that all dark matter is smoothly distributed in the

shape of this profile. In fact, this is certainly not the case:
the presence of galaxies within the two clusters indicates
that at least some fraction of the dark matter in each clus-
ter is located in dense galactic halos, and might therefore
not interact with the dark matter in galaxy halos of the
other cluster unless the two galactic halos happen to pass
within a distance of order � of one another. So long as
at least an order-one fraction of the dark matter in the
A cluster remains outside its galaxies, however—as is ex-
pected from N-body simulations of structure formation
(see, for example, Ref. [34] for a review)—this should
not a↵ect our results by more than order one.

More generally, our results hold only when the dark
matter in the two clusters is not fully sequestered in
clumps separated by length scales longer than the force
range �. Such large separations could result in dark mat-
ter clumps of cluster B passing through cluster A without
ever passing within � of another clump, thus never be-
ing a↵ected by the new force. While this scenario appears
unlikely and is not supported by structure formation sim-

FIG. 1. Our constraints on attractive self-interactions of dark
matter beyond gravity from coherent interactions in the Bul-
let Cluster (see Section II) and from mass measurements of
the Abell 370 cluster (see Section III B), and, for comparison,
previous constraints from the tidal streams of the Sagittar-
ius dwarf galaxy [30–32] and from incoherent scattering in
the Bullet Cluster [22–25] at two assumed dark matter parti-
cle masses (the largest mass at which promordial black holes
can make up all of dark matter, ⇠ 10�10 M� [33], as well
as ⇠ 10�20 M� to illustrate the mass dependence). As a
rough estimate of the uncertainty on our bound, the collision
velocity constraint is shown assuming both NFW and King
profiles, as well as for an NFW profile but conservatively as-
suming that the gas collides at two times the scale radius
rather than at the scale radius of the A cluster. The shortest
ranges at which we plot the lensing and tidal tails constraints
are approximate; see the discussion in Section III. Note also
that the upper edge of the parameter space excluded by the
Sagittarius Dwarf is presently unknown; Ref. [32] has shown
only that ↵ = 1 is consistent with observation.

LONG RANGE INTERACTIONS


