Where Next for Indirect Dark Matter Searches?

Tracy Slatyer

TeV Particle Astrophysics 2024 University of Chicago 29 August 2024

Office of Science

Indirect detection

- A tentative definition: search for signals of dark matter interactions
 (1) by measuring Standard Model particles,
 (2) where the relevant dark matter interactions occur <u>outside</u> the detector
- Classic examples: search for long-lived particles (photons, neutrinos, (anti)nuclei) produced by annihilation / decay of dark matter

 Variations: search for other production mechanisms (e.g. axion-photon oscillation), search for downstream observable effects rather than the particles themselves (e.g. heating of gas clouds, ionization of early universe)

Why indirect detection?

- Take advantage of existing multiwavelength/multimessenger ensemble of observatories designed to study astrophysics → tests DM properties over enormous mass range
- Interactions can occur anywhere outside detector = can probe enormous time/length scales, unique sensitivity to properties like DM lifetime
- In thermal freezeout scenarios, directly probes annihilation process that sets DM abundance
- Example: for visible decays, DM lifetime must be 8+ orders of magnitude longer than the age of the universe over 20+ orders of magnitude in mass

Testing thermal freezeout

 Can we exclude DM that annihilates with the thermal relic cross section into SM particles? (or mediators that promptly decay to SM particles)

$$\langle \sigma v \rangle \approx 2 \times 10^{-26} \mathrm{cm}^3 / s \approx \frac{1}{(25 \mathrm{TeV})^2} \sim \frac{1}{m_{\mathrm{Pl}} T_{\mathrm{eq}}}$$

- Generally viable down to m_{DM} ~ 1-10 MeV; new mediators required for m_{DM} ≲ 2 GeV. Unitarity + standard cosmology requires m_{DM} < 100 TeV - 1 PeV [Smirnov, Beacom '19]
- Currently, multiwavelength photon and cosmic-ray observations (especially *Fermi*, AMS-02) constrain thermal relic cross sections up to O(10s-100s) GeV, for all final states except neutrinos
- In the next 10 years: large southern hemisphere ground-based gamma-ray telescopes aim to test thermal relic cross-section up to 10s of TeV (expanding on existing program with HESS, VERITAS, MAGIC, HAWC, LHAASO)

The next generation of highenergy gamma-ray telescopes

- LACT at LHAASO: add air Cherenkov telescope array in LHAASO site (existing water Cherenkov telescope) [see plenary talk by Zhen Cao]. First light in the next year. Northern hemisphere => Galactic Center at high zenith angle [but see e.g. Abe et al 2212.10527 (MAGIC) for an example of competitive constraints with highzenith-angle observations].
- Cherenkov Telescope Array (CTA): air Cherenkov telescopes, 20 GeV 300 TeV. "Alpha Configuration" has funding in place for construction during 2022-2027 [see plenary talk by Manuel Meyer]. Southern hemisphere site in Chile.
- Southern Wide-Field Gamma-Ray Observatory (SWGO): water Cherenkov telescopes, energies ~100 GeV

 PeV, large field of view (45 degrees) = longer viewing of targets, better sensitivity to extended sources.
 Recent announcement on August 12 site chosen at Atacama Astronomical Park in Chile.
 Construction start "as early as 2026", "begin gamma-ray observations before the end of the decade" (source: https://www.swgo.org/SWGOWiki/doku.php?id=site_press_release). NSF has provided R&D funding to date.
- Advanced Particle-Astrophysics Telescope (APT): space-based, much smaller area, focused on lower energies (< TeV) - could significantly improve on *Fermi* limits in GeV-TeV range [e.g. Xu et al 2308.15538]. Demonstrator ADAPT scheduled for balloon flight in 2025.
- Neutrino telescopes (IceCube, in future P-ONE) can also set competitive constraints in this heavy mass range [e.g. Abbasi et al (IceCube) 2303.13663, Desai et al 2302.10542]

Heavy SU(2) WIMPs

- In addition to the thermal relic cross-section as a generic benchmark, one can consider specific models that inhabit this space
- "Minimal dark matter" scenarios [Cirelli et al '05] provide some simple benchmarks that are generally not yet excluded
- Basic idea is just to add a new SU(2)
 multiplet to the SM abundance is obtained
 by thermal freezeout, which fixes the mass
- Preferred masses are at the TeV+ scale and are difficult to probe with future colliders; direct detection signals are near/ below neutrino floor
- Potential for a clean/striking indirect detection signal from annihilation producing gamma rays

Minimal DM in indirect detection

- Precise theory predictions for heavy electroweakinos require careful effective field theory analysis [e.g. Hisano et al '03, '04; Baumgart, TRS et al '19, '23; Beneke et al '20, '22] Lightness of W and Z relative to DM gives rise to large effects that need to be resummed.
- Detailed studies have been done for higgsino (doublet), wino (triplet), quintuplet (5-plet).
- Strongest limits use Galactic Center data; systematic uncertainty from DM density profile [see talk by Matt Baumgart for dwarf limits].
- Current HESS data are in tension with wino and marginally consistent with 5-plet (depending on density profile). Should both be robustly detected or excluded with future CTA gamma-ray observations.
 Higgsino should be testable with CTA; no conflict with current data even for peaked density profiles, mild excess at the right mass with *Fermi* [Dessert et al '22]
- Resummation calculation has been generalized to all odd representations [Baumgart, TRS et al '23]; CTA sensitivity analysis for higher representations in progress

Above the thermal window: ultraheavy DM

- (Much) higher masses can be achievable even for thermal relic DM when standard assumptions break down, e.g. via modifications to cosmology such as a first-order phase transition in the dark sector [e.g. Asadi, TRS et al '21], or formation of many-particle bound states after freezeout [e.g. Coskuner et al '19, Bai et al '19] can lead to macroscopic DM candidates
- Non-thermal production mechanisms (e.g. out-of-equilibrium decay of a heavier state) are also viable
- Observations of ultra-high-energy CRs and photons could provide sensitivity to decays of ultraheavy DM candidates [e.g. Berezinsky et al '97, Romero-Wolf et al '20, Anchordoqui et al '21], as could observations of secondary particles from cascades, using lower-energy gamma-ray and neutrino telescopes

Future experiments				
CTA	Photons	20 GeV - 300 TeV	Targeted	Chile & Spain
SWGO	Photons	100 GeV - 1 PeV	Wide	South America
IceCube-Gen2	Neutrinos	10 TeV - 100 EeV	Wide	Antarctica
LHAASO (full)	Photons	100 GeV - 10 PeV	Wide	China
KM3NeT	Neutrinos	100 GeV - 10 PeV	Wide	Mediterranean Sea
AugerPrime	Photons & Neutrinos	1 EeV - 1 ZeV	Wide	Argentina
POEMMA	Neutrinos	20 PeV - 100 EeV	Wide	Space

The MeV gap

- MeV-GeV band is currently the focus of a huge amount of effort in accelerator and direct searches.
- Indirect limits are already quite strong at these energies, so viable models are not produced by thermal freezeout or have suppressed annihilation today

- However, there is a gap in sensitivity for energies between *Fermi* and Xray telescopes
- Many recent ideas for experiments to close this gap, primarily balloon- and eventually space-based telescopes [e.g. SMILE, GECCO, GRAMS, GammaTPC, AMEGO-X, e-ASTROGAM; see talks by Regina Caputo and Tsuguo Aramaki]
- COSI is a new wide-field soft gamma-ray telescope (0.2-5 MeV), scheduled for launch August 2027.
- With future ideas, some prospect of reaching p-wave thermal relic cross section (suppressed by v²) for sufficiently low mass DM [e.g. Coogan et al 2101.10370], plus will offer new sensitivity to primordial black holes [e.g. Ray et al 2102.06714]

X-ray indirect searches

- Not many annihilation/decay channels open for DM lighter than the electron mass models often predict monochromatic photon spectral lines.
- Several current/future experiments are targeting fine energy resolutions: e.g. 7 eV (XRISM, launched September 2023), 3 eV (Micro-X), 2.5 eV (Athena).
 10⁻³ energy resolution would be sufficient to measure Doppler linewidth for Galactic DM.
- X-ray observations can set stringent constraints on low-energy photons produced by higher-mass DM [e.g. Cirelli et al 2303.08854], and can also constrain other DM interactions, e.g. axion-photon oscillations.

 X-ray line limits (combined with warm DM bounds) place stringent limits on sterile neutrino DM

 Axion-like particles produced in stars can convert into keV-scale photons in B-fields; background keV-scale photons can convert into axion-like particles, modulating their spectrum

Lower-energy photons

- Below the X-ray band, still many interesting observations for indirect detection
- Radio, microwave, infrared, optical, UV etc are especially relevant for very light DM
- Can also be populated by secondary emission from higher-energy DM
- e.g. synchrotron from e⁺e⁻ in the Galactic magnetic field can produce radio signals
- systematics in cosmic-ray propagation + B-field modeling, but potentially very strong limits on heavy DM [e.g. Chan et al '19 from Andromeda, Regis et al '21 from the LMC, Kadota et al '24 from compact objects]

Cosmic ray antimatter

- The astrophysical backgrounds for low-energy antinuclei (in particular antideuterons, antihelium) are expected to be tiny
- Near-term: GAPS balloon flight scheduled for 2024-25 austral summer, dedicated search for low-energy antiprotons + antideuterons (see also talk by Tsuguo Aramaki)
- AMS-02 has tentatively observed (at higher energies) O(10) anti-He events, including a claim of 2 anti-He-4 events ["AMS Days at La Palma, La Palma, Canary Islands, Spain," (2018)]
- This would be extremely unexpected naively expect astrophysical flux to drop by O(10⁻⁴) for each antinucleon added.
- Also non-trivial to achieve with DM annihilation, although production of \$\overline{\Lambda}_b\$-baryons which decay to antihelium could boost the signal [Winkler & Linden '21]
- There are large theory uncertainties in all the possible production channels - potential to clarify at accelerators (ALICE).
- De La Torre Luque et al '24 argues anti-He-4 events cannot be produced with simple DM models (or known astrophysics).

Winkler et al '21

The cosmos as calorimeter

- DM annihilation/decay would affect the evolution of the cosmos throughout its history
- Annihilation limits take advantage of higher density at early times increased ionization modifies the CMB, giving stringent+robust constraints especially on light DM
- Below the ionization threshold, soft photons can still efficiently heat the gas [e.g. Acharya et al 2303.17311, Cyr et al 2404.11743]; higher-energy photons can modify radiation backgrounds and excite hydrogen [e.g. Xu, Qin & TRS 2408.13305]
- Heating, ionization and extra background radiation can change the evolution of the first stars [see talk by Wenzer Qin]
- Other interactions e.g. DM-baryon scattering [see plenary by Vera Gluscevic], axion-photon oscillations can also leave distinctive imprints in cosmological data

21cm as a probe of decaying dark matter

- A cosmological 21cm signal would provide a new window on cosmic dawn and the end of the cosmic dark ages [see also plenaries by Julian Muñoz and Phil Bull]
- HERA has "Season 6" data in hand, plausible astrophysical models would predict a detectable signal in this dataset [Breitman et al 2309.05697]
- 21cm can be used to probe properties of first stars/galaxies, which in turn depend on DM halos

- Can also be used as a "cosmic thermometer" - probes early heating/ionization
- A detection could thus be used to constrain DM decay/annihilation

DM21cm

- We recently presented a new public code (https://github.com/yitiansun/DM21cm) built to work with existing public 21cmFAST package [Sun, TRS et al 2312.11608]
- Models effects on 21cm light-cone from DM decay into arbitrary final states, for the first time taking into account the inhomogeneity of the decay signal
- More generally, enables modeling general injection of photons/electrons/positrons (arbitrary spatial dependence, redshift dependence, energy spectrum) in 21cmFAST

Complementary measurements

- Definitely a case where there are both challenges and opportunities
- Indirect searches would greatly benefit from a better understanding of:
 - Cosmic ray production, composition, and propagation (input from fixed-target experiments, cosmic-ray measurements, better modeling)
 - Galactic diffuse photon emission (input from multiwavelength studies of the Galaxy, new tracers of interstellar gas, better modeling)
 - Improved understanding of the DM density distribution, e.g. in dwarfs / toward the Galactic Center, and for the smallest clumps of DM
 - and more...
- Novel analysis methods (including but not limited to techniques involving ML/AI) can yield new insights as well

Summary

- Indirect searches for dark matter currently:
 - test thermal relic annihilation cross sections up to O(10s-100s) GeV DM
 - exclude decay lifetimes up to 10²⁷⁻³⁰ s over a very wide DM mass range,
 - serve as sensitive probes of other possible DM interactions with visible particles
- Future experiments offer many exciting prospects, including:
 - sensitivity to significantly higher-mass thermal DM, up to the O(100) TeV scale (+ lower cross-sections at lower masses)
 - improved sensitivity to MeV-GeV photons, closing the "MeV gap" in sensitivity relevant both for light particle DM and primordial black holes
 - probing new low-background detection channels, such as anti-deuterons / antihelium
 - new limits/signal channels from an improved understanding of the early universe