XENONnT: FIRST MEASUREMENT OF

Langing Yuan (UChicago), on behalf of the XENON collaboration Aug 26 2024, TeVPA 2024

SOLAR 8BCE7

SOLAR ⁸B CE_VNS

- CE_vNS: Coherent Elastic Neutrino-Nucleus Scattering
 - First measured by COHERENT (2017) from a spallation neutron facility
 - Never measured in a xenon target
- ⁸B CE ν NS: Expected to have the largest detectable number of CE ν NS events in xenon

Signature nearly indistinguishable from 5.5 GeV/ c^2 WIMP with spin-independent $\sigma_{SI} = 4.4 \times 10^{-45}$ cm² nuclear recoil

SOLAR ⁸B CE_VNS

- Nearly invisible in conventional 3-fold analysis that requires \geq 3 detected photons
 - Can try to measure by **lowering energy** threshold in analysis
 - Need to be sensitive to nuclear recoil with energy ~1 keV_{NR}
- Goal: A **BLIND** search for ⁸B CE ν NS
- A measurement of ⁸B CE ν NS means:
 - Sensitivity to DM-like weak coherent scattering
 - And...

FIRST measured $CE\nu$ NS with a Xe target

FIRST detected astrophysical ν in a dark matter detector FIRST measured CE ν NS from astrophysical ν source

XENON COLLABORATION: ~170 SCIENTISTS, 29 INSTITUTIONS, 12 COUNTRIES

THE FIRST TWO SCIENCE RUNS

SRO & SR1 SCIENCE DATA

- Data taken between 2021-07 and 2023-08: ~340 days of raw exposure
- **Stable detector response**: <1% (<3%) light (charge) yield variation
- **High liquid xenon purity**: Electron lifetime ~20ms
- Regular calibrations:
 - **g1**: 0.1515 ± 0.0014 PE/ph (SR0) & 0.1367 ± 0.0010 PE/ph (SR1)
 - g2: 16.45 ± 0.64 PE/e (SR0) & 16.85 ± 0.46 PE/e (SR1)

SCIENCE DATA IN ROLIS BLINDED Science data ²²²Rn ³⁷Ar ²²⁰Rn ²³²Th ^{83m}Kr Maintenance AmBe & distillation ⁸⁸YBe ⁸⁸Y (S1-only) 350 300 [s 250 200 200 150 **XENON** 150 SR1 SRO Raw 100 50 2027 2027 2022 2022 2023 2023 07 2022,10 2022,0 2023.07 2022.04

Time [YYYY-MM, UTC]

⁸⁸YBe LOW ENERGY NR CALIBRATION

- Low energy NR yield model significantly affects ⁸B CE ν NS detection efficiency:
- 152 keV neutrons from photo-disintegration of ⁹Be by γ -ray of ⁸⁸Y
 - **Recoil energy spectrum similar to ^{8}BCE_{\nu}NS**
- Good match between simulation and data
- Light/charge yield model are constrained by ⁸⁸YBe data at 23V/cm
 - Yield model uncertainty leads to ~34% signal rate uncertainty

Publication in preparation

ENERGY THRESHOLD AND REGIONS OF INTEREST

S1 ROI: 2 or 3 hits

- An S1 hit corresponds to a detected photon
- **S2 ROI:** 120 500 PE
 - electrons

~Equivalent to 4 - 16 extracted

ENERGY THRESHOLD AND REGIONS OF INTEREST

S1 ROI: 2 or 3 hits

- An S1 hit corresponds to a detected photon
- Relaxed S1 waveform shape requirement from conventional 3-fold analysis

- **S2 ROI:** 120 500 PE
 - electrons

arXiv:2408.02877

BACKGROUNDS

DOMINANT BACKGROUND: ACCIDENTAL COINCIDENCE

- Accidental Coincidence (AC): Random unphysical pairing of isolated S1 and isolated S2
 - Isolated peaks are believed to be side products of high energy (HE) interactions
 - Exact physical mechanisms of isolated peaks are under investigation
 - Isolated-S1 Rate before mitigation: 15 Hz
 - Isolated-S2 Rate before mitigation: 150 mHz
- **Mitigated** by utilizing selections based on space&time correlation to previous HE interactions
 - Isolated-S1 rate after mitigation: 2.3 Hz
 - Isolated-S2 rate after mitigation: 25 mHz

TimeShadow = Max(S2_{pre}/ Δt_{pre}) used in inference $0.0^{10^{-4}}$

arXiv:2408.02877

BACKGROUNDS

SUPPRESS AC BACKGROUND

- Accidental Coincidence (AC): Random unphysical pairing of isolated S1 and isolated S2
 - Isolated peaks are believed to be side products of high energy (HE) interactions
 - Exact physical mechanisms of isolated peaks are under investigation
- Further suppressed AC by 2 Boosted Decision Tree (BDT) selections:
 - **S1 BDT**: xenon photon spectrum + S1 pulse shape & spectrum
 - **S2 BDT**: S2 pulse shape compatible with diffusion law
- ► 3⁴-bins **4D** search space for better discrimination power against AC:
 - (cS2, S1 BDT, S2 BDT, TimeShadow)

Expected # of AC events: 7.5 ± 0.7 for SR0 & 17.8 ± 1.0 for SR1

VALIDATION OF AC MODEL arXiv:2408.02877

- Validated by AC sideband unblinding (events that failed S2 BDT cuts)
- The difference (<10%) is considered when determine systematic uncertainty Constrained ER light yield with 1598 observed events

Publication in preparation

Validated by ³⁷Ar L-shell 0.27 keV_{ER} calibration data

11

OTHER SUBDOMINANT BACKGROUNDS

Phys. Rev. Lett. 129, 161805 (2022) - ¹²⁴Xe — ^{83m}Kr $^{214}{
m Pb}$ — $^{136}{
m Xe}$ Solar ν — Materials — ¹³³Xe 85 Kr Data 50 -2040-40 Events/(t·y·keV) 30 -60Z [cm] -8020 -100-120Ь -14080 100 120 140 20 60 0 40Energy [keV]

Electronic recoils: Dominated by beta decays from ²¹⁴Pb

- Assumed flat spectrum extrapolated from unblinded data
- Conservatively assigned 100% uncertainty to yield model
- **ER** background prediction:
 - SR0: 0.13 ± 0.13 Events
 - SR1: 0.56 ± 0.56 Events

R [cm]

Radiogenic neutron: spontaneous fission and (a,n) reactions

- Modeled in a combination of data-driven approach and MC
- Neutron background prediction:
 - SR0: 0.13±0.07 Events
 - SR1: 0.33±0.19 Events
- **Surface background**: ERs from ²¹⁰Pb plate out at detector walls
 - ► Data-driven model predicts < 0.3 Events → **negligible**

arXiv:2408.02877

FINAL PREDICTION BEFORE UNBLINDING

Component	Expectation	Best-fit
AC (SR0)	$7.5~\pm~0.7$	
AC (SR1)	$17.8~\pm~1.0$	
\mathbf{ER}	$0.7~\pm~0.7$	
Neutron	$0.5\substack{+0.2 \\ -0.3}$	
Total background	$26.4^{+1.4}_{-1.3}$	
⁸ B	$11.9^{+4.5}_{-4.2}$	
Observed		

Total exposure: 3.51ton year **Expect** ⁸**B** CE ν NS: 11.9^{+4.5}_{-4.2} Events

48% probability to observe >3 σ significance

arXiv:2408.02877

BEST-FIT AFTER UNBLINDING

Component	Expectation		Best-fit
AC (SR0)	$7.5~\pm~0.7$		$7.4~\pm~0.7$
AC (SR1)	$17.8~\pm~1.0$]	17.9 ± 1.0
\mathbf{ER}	$0.7~\pm~0.7$		$0.5\substack{+0.7 \\ -0.6}$
Neutron	$0.5\substack{+0.2 \\ -0.3}$		$0.5~\pm~0.3$
Total background	$26.4^{+1.4}_{-1.3}$	C 2	26.3 ± 1.4
⁸ B	$11.9^{+4.5}_{-4.2}$		$10.7^{+3.7}_{-4.2}$
Observed		37	

Flux-weighted $\sigma_{\rm CEVNS}$ in agreement with SM

Flux measurement in agreement with SNO (2013) arXiv:2408.02877

AGREEMENT WITH MODEL IN SEARCH SPACE

Data agrees with the signal + background expectation

XENONNT: FIRST MEASUREMENT OF SOLAR ⁸B CE ν NS

CONCLUSIONS AND OUTLOOK

- XENONnT performed a blind search for ⁸B CE ν NS 2.73σ discovery significance
 - The first measurement of ⁸B CE ν NS: 10.7^{+3.7}_{-4.2} events

FIRST detected astrophysical u in a dark matter detector FIRST measured CE ν NS from astrophysical ν source **FIRST** measured $CE\nu$ NS with a Xe target

arXiv:2408.02877 17

XENONNT: FIRST MEASUREMENT OF SOLAR ⁸B CE ν NS

CONCLUSIONS AND OUTLOOK

- XENONnT performed a blind search for ⁸B CE ν NS > 2.73σ discovery significance
 - The first measurement of ⁸B CE ν NS: 10.7^{+3.7}_{-4.2} events
- XENONnT sets its first step into the neutrino fog
 - Search for dark matter in the neutrino fog publication in preparation
 - Improvement of sensitivity in few GeV WIMP will be slower... while >~20 GeV is still unaffected!
 - Much more blinded data has been taken!

F @XENONexperiment

@xenon_experiment

3 NESTED DETECTORS: TPC/NV/MV SHARING SAME DAQ

- **5.9t** active target mass
- including ~8.9% ¹³⁶Xe by natural abundance
- active target diameter/height:1.3m/1.5m
- ▶ 494 Hamamatsu 3″ PMTs

eto (NV ater **3d-load** Neut J

- ▶ 33 m³ volume
- Use neutron capture to tag neutron events at the efficiency of **53%** in pure water
- High reflectivity expanded PTFE

(Pure water for published results so far)

▶ 120 8" high QE PMT

nonm ť Wate Cher Muoi

JINST 18 P07054 (2023) JCAP 11 031 (2020) Eur.Phys.J.C 84 (2024) 8, 784

- Diameter/Height 9.6m/10.2m, 700t water
- High reflectivity inner coating
- ▶ 84 Hamamatsu 8″ PMTs
- Active veto against muon-induced neutrons
- Passive veto against gamma rays and neutrons from natural radioactivity

3 NESTED DETECTORS: TPC/NV/MV SHARING SAME DAQ

- ► 5.9t active target mass
- including ~8.9% ¹³⁶Xe by natural abundance
- active target diameter/height:1.3m/1.5m
- ► 494 Hamamatsu 3" PMTs

eto (NV ater **Gd-loaded Cherenkov** Neutron

- (Pure water for published results so far)
- ► 33 m³ volume
- High reflectivity expanded PTFE
- ▶ 120 8" high QE PMT
- Use neutron capture to tag neutron events at the efficiency of 53% in pure water

÷ Wati Chei Muo

JINST 18 P07054 (2023) JCAP 11 031 (2020) Eur.Phys.J.C 84 (2024) 8, 784

- Diameter/Height 9.6m/10.2m, 700t water
- High reflectivity inner coating
- ▶ 84 Hamamatsu 8" PMTs
- Active veto against muon-induced neutrons
- Passive veto against gamma rays and neutrons from natural radioactivity

3 NESTED DETECTORS: TPC/NV/MV SHARING SAME DAQ

- ► 5.9t active target mass
- including ~8.9% ¹³⁶Xe by natural abundance
- active target diameter/height:1.3m/1.5m
- ► 494 Hamamatsu 3" PMTs

eto (NV ater 0

- ▶ 33 m³ volume
- Use neutron capture to tag neutron events at the efficiency of **53%** in pure water
- High reflectivity expanded PTFE

(Pure water for published results so far)

▶ 120 8" high QE PMT

cto uonu **D** et et Water Chere Muon

JINST 18 P07054 (2023)

- Diameter/Height 9.6m/10.2m, 700t water
- High reflectivity inner coating
- ▶ 84 Hamamatsu 8" PMTs
- Active veto against muon-induced neutrons
- Passive veto against gamma rays and neutrons from natural radioactivity

S1 BDT FEATURES

NO.2 min time between hits

NO.4 total hit count

BACKUP

S2 BDT FEATURES

NO.1 50-percent area range NO.2 Risetime

NO.3 90-percent area range

NO.4 drift-time

ISO-PEAKS' SPACE&TIME CORRELATION TO HE INTERACTIONS

