Galaxies as Probes of the Particle Physics Nature of Dark Matter

Dark Matter Models

Numerical Simulations

Wealth of Data

Outline

Galaxy Dynamics and Cold Dark Matter

Modeling Challenges

Beyond Cold Dark Matter

Small-Scale Structure

Milky Way Dwarf Galaxies

Dwarfs in the Milky Way

What are their masses and concentrations? How are they distributed spatially? What are their orbits?

Pace, Erkal, and Li [2205.05699]

Dark Substructure in the Milky Way

Dark subhalos can perturb stellar streams

Credit: C. Bickel/SCIENCE

In some cases a subhalo can actually break the stream by flying through it

e.g., Ngan and Carlberg [1311.1710]; Erkal et al. [1606.04946]

The GD-1 Stream

Do perturbations in GD-1 provide first evidence of a dark matter subhalo in Milky Way?

Price-Whelan & Bonaca [1805.00425]; Bonaca et al. [1811.03631]

Beyond the Milky Way

Outline

Galaxy Dynamics and Cold Dark Matter

Modeling Challenges

Beyond Cold Dark Matter

Goal for CDM

Obtain robust theory predictions for sub-galactic observables with *well-quantified* uncertainties

Observable of Interest

Challenge #1: Halo-to-Halo Variance

Credit: <u>https://structures.uni-heidelberg.de/blog/posts/2022_12_cw/</u> adaptions of images of NASA, theskylive.com, GAIA and the CLUES project

Challenge #1: Halo-to-Halo Variance

Milky Way appears to be defined by two key events in its history

Gaia Sausage Enceladus (GSE)

Large Magellanic Cloud (LMC)

Credit: https://osr.org/blog/news/large-magellanic-cloud-wake-reveals-dark-matter/

top-down view

Dylan Folsom

Challenge #1: Halo-to-Halo Variance

An IllustrisTNG (50 Mpc)³ volume contains ~100 isolated Milky Way-mass halos of which:

~30 have had a GSE-like event(s)

~2 have had a GSE and LMC-like event

D. Folsom, ML, L. Necib, D. Horta, M. Vogelsberger, and L. Hernquist [2408.02723]

We are Rare

See also Buch et al. [2404.08043]

A Primer to Hydro Codes

Credit: Sandip Roy

Supernova explosions redistribute baryons and dark matter in galaxies

Remains a significant source of uncertainty in galaxy simulations

Energy injection from stellar feedback processes can `core' the inner-most regions of CDM halos

Energy injection from stellar feedback processes can `core' the inner-most regions of CDM halos

Jonah Rose

The DREAMS Project

J. Rose, P. Torrey, F. Villaescusa-Navarro, ML, et al. [2405.00766]

Producing the largest-ever hydro simulation suites that vary over astro and particle physics uncertainties

Suites will be created for different targets (Milky Way, dwarf, ...) and different dark matter models

Outline

Galaxy Dynamics and Cold Dark Matter

Modeling Challenges

Beyond Cold Dark Matter

Theory of Dark Sectors

What if new forces allow dark matter to interact with itself either elastically or inelastically?

Elastic Self Interactions

Self interactions enable heat flow in a halo, redistributing dark matter

Stage 1: Isothermal Core Formation

Heat flows inwards

Dark Matter Halo

Vogelsberger et al. [1201.5892]; Zavala et al. [1211.6426]; Robles et al. [1903.01469]; Zavala et al. [1904.09998]

Elastic Self Interactions

Self interactions enable heat flow in a halo, redistributing dark matter

Stage 1: Isothermal Core Formation

Heat flows inwards

Stage 2: Core Collapse

Heat flows outwards

Dark Matter Halo

Balberg et al. [astro-ph/0110561]; Koda and Shapiro [1101.3097]; Elbert et al. [1412.1477]; Essig et al. [1809.01144]; Nishikawa et al. [1901.0049]; Kahlhoefer et al. [1904.10539]; Turner et al. [2010.02924]

Oren Slone

Dwarf Population Statistics

Gravothermal collapse can lead to a mixture of cores and dense cusps across a population of dwarf galaxies

Spread for Population of Field Dwarfs

Central Density of Dwarf Galaxy

O. Slone, ML, M. Kaplinghat, and R. Wechsler [in prep]

Oren

Slone

Connor

Hainje

Sagittarius Stream

Dark matter self interactions between satellite halo and its host affect tidal mass loss, impacting stream morphology

C. Hainje, O. Slone, ML, and D. Erkal [in prep]

Inelastic Self Interactions

If dark matter can cool, it can collapse into dark compact objects

Example: Atomic Dark Matter (ADM)

D. Kaplan et al. [0909.0753], Cyr-Racine and Sigurdson [1209.5752], J. Fan et al. [1303.1521, 1303.3271], A. Ghalsasi and M. McQuinn [1712.04779]

GIZMO + ADM Hydro Framework

Physics	<u>Particles</u>
Gravity	All
Supernovae feedback	Baryons
Cooling & collapse	Baryons & ADM

S

Sandip Roy Xuejian Shen

Properties of Field Dwarfs

First simulation suite of isolated dwarf galaxies for CDM + 5% ADM

S. Roy, X. Shen, J. Barron, ML, D. Curtin, N. Murray, and P. Hopkins [today]

Properties of Field Dwarfs

Central density of dwarf galaxies can be significantly enhanced, providing sharp predictions for observables

S. Roy, X. Shen, J. Barron, ML, D. Curtin, N. Murray, and P. Hopkins [today]

Conclusions

Wealth of upcoming data will allow us to test the impact of dark matter on sub-galactic scales

Theory needs to catch up to observations: addressing baryonic uncertainties is a top priority

Long-term goal is to make robust theory predictions for CDM and non-CDM models to harness full potential of upcoming surveys

Postdoc Acceptance Deadline

ad hoc panel appointed by the APS DPF Executive Committee is re-examining the common deadline for postdoc offers in high energy theory

To inform their final recommendations, the panel is running a survey to gather community input on the acceptance deadline

Applicants + Employers: Share Your Thoughts by September 15, 2024

APS DPF Committee

Csaba Csaki (Cornell) Vijay Balasubramanian (UPenn) Alejandra Castro (Cambridge) Mariangela Lisanti (Princeton) Hirosi Ooguri (Caltech/UTokyo) Shufang Su (UArizona)

