Manuel Meyer, Lea Burmeister, Paolo Da Vela, Francesco Longo, Guillem Marti-Devesa, Francesco Saturni, Antonio Stamerra, Peter Veres On behalf of the *Fermi*-LAT collaboration University of Southern Denmark, CP3 Origins TeVPA 2024, Chicago, IL, USA August 26-30, 2024

Space Te

escope

ec SDU -

Constraints on the intergalactic magnetic field from Fermi-LAT observations of GRB 221009A

The Intergalactic magnetic field

IllustrisTNG simulation — Marinacci et al. (2018)

Sermi Gamma-ray Space Telescope

The Intergalactic magnetic field

- B-fields in galaxies and galaxy clusters originate from amplified seed field
- Origin, strength, orientation of seed fields unknown
- Extremely difficult to measure directly

IllustrisTNG simulation — Marinacci et al. (2018)

Searching for a pair echo to measure and constrain the IGMF [Plaga 1995]

- Primary γ rays from GRB produce e^+e^- pairs
- Pairs up scatter CMB photons to γ -ray energies \rightarrow cascade
- Cascade photons arrive with delay due to deflection in IGMF

The Fermi Large Area Telescope (LAT) Observing the gamma-ray sky since June 11, 2008

Energy range	20 MeV - over 300 GeV
Effective Area (E > 1 GeV)	~ 1 m²
Point spread function (PSF)	0.8° @ 1 GeV
Field of view	2.4 sr (~20% of the sky
Orbital period	91 minutes
Altitude	565 km

- Survey mode: full sky observed every 3 hours
- Public data, available within 12 hours

E > 100 MeV 10 hours of observation 20° x 20° Credit: NASA/DOE/Fermi LAT Collaboration

·eesa

The BOAT GRB in Context

[NASA's Goddard Space Flight Center and Adam Goldstein (USRA)]

7 minutes

GRB221009A — BOAT

- Brightest GRB ever observed
- Redshift z = 0.1505 (VLT X-Shooter, GTC) from Cal, II absorption lines
- Fermi LAT detected 99.4 GeV photon (new record from GRB) at $T_{\rm 0}+240~{\rm s}$
- LAT also detected 400 GeV photon at T_0 + 33 ks (preliminary: 4σ association with GRB)
- Detected at very high energies with LHAASO

VHE photons seen with LHAASO

[LHAASO Collaboration <u>Science</u> <u>2023, Sci. Adv. 2023</u>]

- WCDA: > 64,000 gamma rays
- KM2A: 140 gamma rays between 3 and 13 TeV in ~900s

between 0.2 TeV and 7 TeV in ~3000s

- Light curve suggests jet opening angle of 1.6°
- Distance and highest energies: strong absorption on EBL

Composite LAT and LHAASO light curves

[Fermi-LAT collaboration, in prep.]

Modeling the temporal and spectral cascade structure with CRPropa3

- <u>CRPropa 3</u> Monte Carlo Code used to generate 4D (spatial + energy + delay time) templates
- Assumed magnetic field:
 - Kolmogorov turbulence spectrum
 - $B_{\rm rms} = 10^{-20} \,\mathrm{G}, \dots, 10^{-15} \,\mathrm{G}$
 - Coherence length: $\ell_R \approx 6 \,\mathrm{Mpc}$
- EBL model of Franceschini et al. (2008)
- Jet opening angle: 1.6°, jet aligned with line of sight

Assumed Intrinsic spectrum Taken from LHAASO WCDA

- LHAASO Collaboration fitted physical
 GRB model to their observations
- We approximated this model with a log parabola and derived time averaged spectrum:

$$E^2 F_E = \phi_0 \left(\frac{E}{E_0}\right)^{\gamma + \eta \ln(E/E_0)}$$

- Additionally multiplied with exponential cutoff at 7 TeV
- Assumed emission time: 3000s

2023] Science Collaboration [LHAASO

Fermi-LAT light curve vs pair echo predictions

Statistical analysis: spectral and temporal likelihood

Cascade SED with additional afterglow emission (not shown)

- For each time bin *i*:
 - Add cascade prediction for fixed $B_{\rm rms}$
 - Compute log likelihood summed over energy bins j: $\ln \mathscr{L}_i \equiv \sum_j \ln \mathscr{L}(B_{\rm rms}, \hat{\theta} \mid D_{ij})$
 - $\widehat{\boldsymbol{\theta}}$: optimized nuisance parameters
- Consider two cases for $T < T_0 + 3$ days:
 - No afterglow emission
 - Afterglow emission modeled with power law with index $\Gamma=2$

-16

Likelihood profiles No astrophysical afterglow emission added

- "Detection" of pair echo emissions at early times
- Pair echo takes role of astrophysical afterglow, which is expected to be present

Likelihood profiles With afterglow emission added

 With added afterglow: "detection" disappears

- We can rule out magnetic fields where summed log-likelihood is > 2.71
- For $T \in [T_0 + 3 \text{ days}, T_0 + 365 \text{ days}]$: $B_{\text{rms}} \gtrsim 4 \times 10^{-17} \text{ G} \text{ (95\% confidence)}$

Comparison with previous constraints

- Best constraints so far on IGMF with pair echo technique
- Compared with previous constraints also using GRB221009A:
 - We include more data
 - Robust statistical analysis
 - Include astrophysical afterglow
- Compared to pair halo searches:
 - No assumptions on activity time necessary
 - Plasma instabilities that could suppress cascade probably not relevant here

15

Summary and Conclusions

- GRB221009A offers wealth of opportunities to study GRB physics and photon propagation
- We have derived new constraints on IGMF with $B_{\rm rms}\gtrsim 4\times 10^{-17}\,{\rm G}$
- Best constraints so far from pair echo technique
- Constraints depend mildly on chosen EBL model
- Outlook: use predictions from GRB afterglow model instead of power law with $\Gamma=2$

Sermi Gamma-ray Space Telescope

Fermi-LAT data selection

- All point sources within 15° from 4FGL catalog included in ROI
- Galactic diffuse and isotropic diffuse backgrounds included
- After initial optimization: spectral parameters of point sources within 3° from GRB re-fitted

Parameter	Selection
Time range	Up to 1 year after T_0
Energy Range	100 MeV — 0.1 TeV
ROI size	10° x 10°
Max. Zenith angle	900
Filter	DATA_QUAL>0 && LAT_CONFIC
Spatial binning	0.1° / pixel
Energy binning	8 bins per decade
Event Class / IRFs	P8R3_S0URCE_V3, inflight P8

One slide on GRBs

Gamma-Ray Bursts (GRBs): The Long and Short of It

Dermi

Gamma-ray Space Telescope

GRBs detected in 10 years with the LAT

GRB221009A in perspective

Credit: Adam Goldstein

Host galaxy of GRB221009A

- Observed with JWST and HST
- Appears to be ordinary spiral galaxy
- Observed edge-on
- Strong B field unlikely

https://arxiv.org/pdf/2302.07761.pdf

Constraints on the IGMF from other authors Using GRB221009A

Gamma-ray Space Telescope

[Huang et al. (2023), Volk et al. (2024), Dzhatdoev et al. (2024)]

Time resolved SEDs from Huang et al. (2023)

Statistical analysis: spectral and temporal likelihood

Cascade SED no afterglow emission

- For each time bin *i*:
 - Add cascade prediction for fixed $B_{\rm rms}$
 - Compute log likelihood summed over energy bins j: $\ln \mathscr{L}_i \equiv \sum_j \ln \mathscr{L}(B_{\rm rms}, \hat{\theta} \mid D_{ij})$
 - $\widehat{\boldsymbol{\theta}}$: optimized nuisance parameters
- Consider two cases for $T < T_0 + 3$ days:
 - No afterglow emission
 - Afterglow emission modeled with power law with index $\Gamma=2$

