Nonlinear feedback of the electrostatic instability on the blazar-induced pair beam and GeV cascade

Mahmoud Alawashra (DESY)

With Martin Pohl (DESY) and IevgenVovk (University of Tokyo) **TeV PA 2024 University of Chicago August 27th 2024**

Cosmic Voids

Sloan Digital Sky Survey 600 Mpc

2

TNG300 Simulation 300MpcX300Mpc

• **Gamma rays from blazars are unique prob of the cosmic voids.**

Breizman & Ryutov (1970)

$$
\frac{\partial f(p,\theta)}{\partial t} = \frac{1}{p^2 \theta} \frac{\partial}{\partial \theta} \left(\theta D_{\theta \theta} \frac{\partial f}{\partial \theta} \right) + \frac{1}{p \theta} \frac{\partial}{\partial \theta} \left(\theta D_{\theta p} \frac{\partial f}{\partial p} \right)
$$
\n
$$
+ \frac{1}{p^2} \frac{\partial}{\partial p} \left(p D_{p\theta} \frac{\partial f}{\partial \theta} \right) + \frac{1}{p^2} \frac{\partial}{\partial p} \left(p^2 D_{pp} \frac{\partial f}{\partial p} \right)
$$
\n
$$
D_{ij}(\mathbf{p}) = \pi e^2 \int d^3 \mathbf{k} \, W(\mathbf{k}, t) \frac{k_i k_j}{k^2} \delta(\mathbf{k} \cdot \mathbf{v} - \omega_p)
$$

 $\partial W(k,t)$ ∂t $= 2 \left(\omega_i(\mathbf{k}) + \omega_c \right) W(\mathbf{k},t)$ 2

$$
\omega_i(\mathbf{k}) = \omega_p \frac{2\pi^2 n_b e^2}{k^2} \int d^3 \mathbf{p} \left(\mathbf{k} \cdot \frac{\partial f(\mathbf{p})}{\partial \mathbf{p}} \right) \delta(\omega_p - \mathbf{k} \cdot \mathbf{v})
$$

Breizman & Ryutov (1970)

$$
\frac{\partial f(p,\theta)}{\partial t} = \frac{1}{p^2 \theta} \frac{\partial}{\partial \theta} \left(\theta D_{\theta \theta} \frac{\partial f}{\partial \theta} \right) + \frac{1}{p \theta} \frac{\partial}{\partial \theta} \left(\theta D_{\theta p} \frac{\partial f}{\partial p} \right)
$$

+
$$
\frac{1}{p^2} \frac{\partial}{\partial p} \left(p D_{p\theta} \frac{\partial f}{\partial \theta} \right) + \frac{1}{p^2} \frac{\partial}{\partial p} \left(p^2 D_{pp} \frac{\partial f}{\partial p} \right)
$$

The plasma waves impact the beam

9

Perry & Lyubarsky (2021) MNRAS 503 2 Alawashra & Pohl (2024) *ApJ 964 82*

The significant feedback is the beam widening $\theta\theta$.

Perry & Lyubarsky (2021) MNRAS 503 2 Alawashra & Pohl (2024) *ApJ 964 82*

The significant feedback is the beam widening $\theta\theta$.

The beam widens by certain factors, suppressing the instability energy loss of the beam. Energy loss by the instability ~ 1%

What is the Impact of the Instability widening on the GeV cascade?

Alawashra, Vovk & Pohl (2024) In perp.

Limitations of the initial beam distribution

- **Study of Perry & Lyubarsky (2021)** *:*
	- *-* **Simplified 1D beam distribution.**

$$
g(\theta) = \int_0^\infty dp \, p \, f(p,\theta) \approx \exp(-0.2(\gamma\theta)^5), \qquad \gamma = 10^6
$$

▪ **Study ofAlawashra & Pohl (2024) :**

- *-* **Realistic 2D beam distribution at distance 50 Mpc from fiducial blazar.**
- *-* **Include the continuous production of the pairs.**

Beams induced by the blazar 1ES 0229+200

Alawashra, Vovk & Pohl (2024) In perp.

• **Consider 1ES 0229+200 like gamma ray source:**

11

$$
F(E_{\gamma}, z=0) = 2.6 \times 10^{-10} \left(\frac{E_{\gamma}}{\text{GeV}}\right)^{-1.7} \exp\left(-\frac{E_{\gamma}}{\text{10 TeV}}\right) \frac{\text{ph.}}{\text{cm}^2 \text{s GeV}}
$$

• **Using the Monte Carol code (CRpropa), we calculated the beams injection rates,** Q_{ee} **, at different distances in the IGM.**

1ES 0229+200 induced beam production rates

Simulation of the instability broadening of 1ES 0229+200 induced beams

Pair Beam:

$$
\frac{\partial f(p,\theta)}{\partial t} = \frac{1}{p^2 \theta} \frac{\partial}{\partial \theta} \left(\theta D_{\theta \theta} \frac{\partial f}{\partial \theta} \right) + \frac{1}{p^2} \frac{\partial}{\partial p} \left(- \dot{p}_{IC} p^2 f \right) + Q_{ee}
$$

Plasma waves:

$$
\frac{\partial W(k,t)}{\partial t} = 2 \left(\omega_i(\mathbf{k}) + \omega_c \right) W(\mathbf{k}, t)
$$

: Continuous production of new pairs.

$$
\text{Pairs cooling:} \quad \dot{p}_{IC} = -\frac{4}{3}\sigma_T u_{CMB} \gamma^2
$$

Beams broadening due to the instability

Cascade delay due to the instability broadening

Conclusions

- **Beam broadening is the dominant instability feedback.**
- **New confined Steady-state of the beams due to the balance between continues pairs production, inverse Compton cooling and instability diffusion.**
- **Time delay of the cascade arrival due to the instability diffusion is NEGLIGIBLE.**

Thank you

Back up slides

Suppression of the cascade emission by IGMFs

Suppression of the cascade by instability energy loss

Second study

Alawashra, Vovk and Pohl (2024) In perp.

Beams induced by the blazar 1ES 0229+200

- **The cascade gets emitted at scales of more than tenths of Mpc in the intergalactic medium while the instability operates at scales of kpc and less.**
- **We can take the cosmological scale information about the beams from Monte Carlo simulations of the blazar beams as an input into the beam-plasma Fokker-Planck diffusion simulation.**

The linear growth rate balances the damping rate

Distance and Luminosity dependence

Instability saturation

Effect of Inverse Compton Cooling

Confined steady state

First study

Alawashra and Pohl (2024) *ApJ 964 82*

Simulation steps

The realistic initial beam distribution

• **Consider the fiducial BL Lac source (Vafin et al 2018):**

$$
F(E_{\gamma}, z = 0)
$$

= 10⁻⁹ $\left(\frac{E_{\gamma}}{GeV}\right)^{-1.8}$ Θ (50 TeV
- E_{γ}) $\frac{\text{ph.}}{\text{cm}^2 \text{s GeV}}$

• **The yielded beam distribution at 50 Mpc from the blazar:**

$$
n_b = 3 \times 10^{-22} \text{ cm}^{-3}
$$

• **The realistic beam distribution at 50 Mpc from blazar (Vafin et al (2018))**

2D simulation of the widening feedback

Significant widening of the beam

Beam energy loss is subdominant

Simulation of the beam-plasma system

Alawashra and Pohl (2024) *ApJ 964 82*

$$
\frac{\partial f(p,\theta)}{\partial t} = \frac{1}{p^2 \theta} \frac{\partial}{\partial \theta} \left(\theta D_{\theta \theta} \frac{\partial f}{\partial \theta} \right) + Q_{ee}
$$

$$
\frac{\partial W(k,t)}{\partial t} = 2 \left(\omega_i(\mathbf{k}) + \omega_c \right) W(\mathbf{k}, t)
$$

 : Continuous production of new pair due to the gamma-rays annihilation with EBL (Vafin et. al (2018)

 $n_e = 10^{-7} (1 + z)^3 \text{cm}^{-3}$ $T_e = 10^4 K$ **Beam and IGM plasma parameters:** $n_h = 3 \times 10^{-22}$ cm⁻³

Expansion of the beam due to the instability

Expansion of the beam due to the instability

Adding Inverse-Compton cooling
\n
$$
\frac{\partial f(p,\theta)}{\partial t} = \frac{1}{p^2 \theta} \frac{\partial}{\partial \theta} \left(\theta D_{\theta \theta} \frac{\partial f}{\partial \theta} \right) + \frac{1}{p^2} \frac{\partial}{\partial p} \left(- \dot{p}_{IC} p^2 f \right) + Q_{ee}
$$

The IC cooling is only relevant for particle momentum

$$
\dot{p}_{IC} = -\frac{4}{3}\sigma_T u_{CMB} \gamma^2
$$

We use the linear evolution of the plasma waves

$$
\frac{\partial W(k,t)}{\partial t} = 2 \left(\omega_i(\mathbf{k}) + \omega_c \right) W(\mathbf{k}, t)
$$

Momentum beam distribution evolution

Confined steady state after IC cooling time

The instability is suppressed by the widening

Unstable wave spectrum evolution

The beam keeps widening

Relevant for pairs with Lorentz factors less than

Small energy loss even for higher densities

$$
\frac{dU_b}{dt}(t) = -2\frac{dW_{\text{tot}}}{dt}(t)
$$
\n
$$
= -8\pi \int dk_{\perp} k_{\perp} \int dk_{\parallel} W(k_{\perp}, k_{\parallel}, t) \omega_i(k_{\perp}, k_{\parallel}, t),
$$
\n(5.38)

The linear growth rate balances the damping rate

Resonance

For
$$
\frac{ck_{\perp}}{\omega_p} > 10^{-2}
$$
, $\gamma > 10^3$ and $\theta < 10^{-3}$
\n**The resonance condition:** $\frac{ck_{\parallel}}{\omega_p} - 1 = \frac{ck_{\perp}}{\omega_p} \theta$
\nLet's look at the case of fixed $\frac{ck_{\perp}}{\omega_p}$

For beam angles with θ

The resonance of the waves is

Are the two solutions independent of each other?

NO,IGMFs impact on the instability.

9 **Alawashra and Pohl (2022)** *ApJ* **⁹²⁹ ⁶⁷**

IGMFs impact the instability

• Weak IGMFs with small correlation lengths, $\lambda_B \ll \lambda_{e}$, **deflect the beam stochastically**

$$
\Delta\theta = \frac{1}{\gamma} \sqrt{1 + \frac{2}{3} \lambda_e \lambda_B \left(\frac{e B_{IGM}}{m_e c}\right)^2}
$$

•**IGMFs widening of the beam impacts the instability growth:**

$$
\omega_i \propto \frac{1}{\Delta\theta^2}
$$

10

Alawashra and Pohl (2022) *ApJ* **929 67**

Instability suppression by the IGMFs

11

IGMFs impact the instability

• **Assume certain non-linear saturation of the waves**

$$
\tau_{\text{loss}}^{-1} = 2 \delta \omega_{i,\text{max}}
$$

$$
\delta = W_{\text{tot}} / U_{\text{beam}}
$$

We consider the one found in Vafin et al. (2018)
$$
\tau_{\text{loss}} / \tau_{\text{IC}} = 0.026
$$

12

IGMFs impact the instability

• **Assume certain non-linear saturation of the waves**

$$
\tau_{\text{loss}}^{-1} = 2 \delta \omega_{i,\text{max}}
$$

$$
\delta = W_{\text{tot}} / U_{\text{beam}}
$$

We consider the one found in Vafin et al. (2018)

$$
\tau_{\rm loss}/\tau_{\rm IC}=0.026
$$

• **The instability is suppressed by the IGMFs when**

$$
\tau_{\text{loss}} = \tau_{\text{IC}}
$$

12

Instability suppression by the IGMFs

