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Fundamental physics with gamma rays is hard

[Fermi-LAT collaboration, ApJS 223 (2016) 2]
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Fig. 1.— Mollweide projection in Galactic coordinates of accumulated counts maps for SAS-2,

COS-B, EGRET (above 50 MeV) and Fermi-LAT (above 360 MeV, 4 years, Clean class events).

Regions with enhanced numbers of counts due to a non-uniform exposure time in observations with

pointed observations are apparent in panels corresponding to SAS-2, COS-B, and EGRET.
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The high-energy gamma-ray sky seen over the decades (space-borne telescopes).
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Figure 1. Visualization of possible solutions to the dark matter problem.
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[Bertone, Tait, Nature 562 (2018) 7725] 

Signatures of fundamental physics 
are potentially hiding there! 
→ How to deal with the complexity  
     of all the astrophysics?  
     There is a lot to model …

https://doi.org/10.3847/0067-0049/223/2/26
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Understanding the gamma-ray sky
[LAT data (9.5 years),  GeV]E ∈ [0.5,500]

localised sources Galactic diffuse emission isotropic -ray background 
(IGRB)

γ

[Pass8 (R3), ULTRACLEANVETO, FRONT+BACK]

-decay + Bremsstrahlungπ0 inverse Compton
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Striving for model complexity is expensive
The curse of dimensionality in Bayesian inference problems:

p(Z |X) =
p(X |Z)p(Z)

p(X)

parameters , data Z X

likelihood prior

The curse of dimensionality
Parameter of interest

Feroz+ 0809.3437 (MultiNest) 
Handley+ 1502.01856 (PolyChord)

100 Million simulations

50 parameters

5

Nsims ∝ Nγ
params , γ ≈ 2.5

In order to solve ONE inference problem, 
we have to solve ALL of them
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posterior

[F. Feroz et al., MNRAS 398 (2009)]
[W. J. Handley et al., MNRAS 450 (2015) 1]

Bayes’ Theorem

[credit: Christoph Weniger]
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Simulation-based inference (SBI) breaks this curse:

r(X; Z) =
p(Z |X)

p(Z)
=

p(X, Z)
p(X)p(Z)

Use machine learning to learn the posterior-to-prior ratio  with a binary 
classifier to reconstruct posteriors! Neural Ratio Estimation (NRE)

r swyft 
[B. Miller et al., J. Open Source Softw. 7 (2022) 75]

Simulation-based inference (swyft) to the rescue!

NRE = binary classification

13

r(x; z) ≡ p(x |z)
p(x) = p(z |x)

p(z) = p(x, z)
p(x)p(z)

Class 1: Matching (data, parameter) pairs

Class 0: Scrambled (data, parameter) pairs

(#, dog)
($, cat)

(%, monkey)

(&, house)

(#, cat)($, dog)

(%, house)
(&, monkey)

(⭐, star)

(⭐, star)
Data:  
Parameter: 

x
z

x, z ∼ p(x, z)

x, z ∼ p(x)p(z)

Strategy: We estimate posteriors-to-prior ratio by training a 
binary classifier to discriminate between matching and 
scrambled (data, parameter) pairs. 
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X, Z ∼ P(X, Z ) X, Z ∼ P(X)P(Z )

joint sample marginal sample

In a nutshell: We train a neural network as a binary classifier to tell us if in a pair  
 generated  which only requires a forward model of the physics involved.

(X, Z)
Z X

Truncated  
Marginal  
Neural
Ratio
Estimation
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Dissecting the high-latitude GeV gamma-ray sky
Our approach: Verify and benchmark the performance of our SBI approach on well-
known terrain before addressing more complex questions about the LAT sky!
 
Optimal science case: Exploring the properties of the high-latitude gamma-ray sky

Why? 
1. Much less affected by Galactic diffuse emission than, e.g., the Galactic center.

2. Limited number of gamma-ray source classes present (majority of extragalactic origin).

3. Well-tested science case: Opportunity for performance of cross-checks!

4. Science case: Composition of the IGRB → Contribution of astrophysical/exotic source classes.

Fermi-LAT diÆuse model

2.12917 4.81516log10 N

4FGL-DR2

0.25813 5.65761log10 N
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Dissecting the high-latitude GeV gamma-ray sky
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Objective: Infer the source-count distribution of high-latitude sources and the astrophysical  
diffuse gamma-ray emission and localise the bright part of the population (detection).

Source-count distribution : # of sources  per  with integral flux in .dN/dS N dΩ (S, S + dS)
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Objective: Infer the source-count distribution of high-latitude sources and the astrophysical  
diffuse gamma-ray emission and localise the bright part of the population (detection).

Source-count distribution : # of sources  per  with integral flux in .dN/dS N dΩ (S, S + dS)
Forward simulator:  as multiply broken power law (norm, break positions and slopes)dN/dS

• Flux  for single energy bin 
from 1 GeV to 10 GeV.

• Correction for PSF effects 
using effective PSF derived 
from data (gtpsf).

• Uses Fermi-LAT non-
uniform exposure.

S

dN
/d

S

S

PS
F

θ
7.59e+10 1.43e+11

Exposure [cm2 s]

n1

n2
n3

Sb,1
Sb,2

AS
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Objective: Infer the source-count distribution of high-latitude sources and the astrophysical  
diffuse gamma-ray emission and localise the bright part of the population (detection).

Source-count distribution : # of sources  per  with integral flux in .dN/dS N dΩ (S, S + dS)
Forward simulator:  as multiply broken power law (norm, break positions and slopes)dN/dS

isotropic distribution in the sky

• Flux  for single energy bin 
from 1 GeV to 10 GeV.

• Correction for PSF effects 
using effective PSF derived 
from data (gtpsf).

• Uses Fermi-LAT non-
uniform exposure.

S
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0 3.70586
log10(counts)
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Source detection in SBI language:
Given the actual observed sky,  
what is the probability of  
observing a source at a certain 
position with flux  exceeding a

certain threshold ?

S
Sth

r(Ω, Sth; x) =
p(𝕀x(S ≥ Sth) = 1,Ω |x)
p(𝕀x(S ≥ Sth) = 1,Ω)

Source Detection using SBI — Method
[N. Anau Montel & C. Weniger, arXiv:2211.04291] 
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Source detection in SBI language:
Given the actual observed sky,  
what is the probability of  
observing a source at a certain 
position with flux  exceeding a

certain threshold ?

S
Sth

r(Ω, Sth; x) =
p(𝕀x(S ≥ Sth) = 1,Ω |x)
p(𝕀x(S ≥ Sth) = 1,Ω)

Under the hood: 
→ classifier trained on full-sky 
     data maps 
→ labels are full-sky maps firing  
    at pixels with point sources
→ UNET architecture as summary 
     statistic on spherical image data  
     (“DeepSphere”) 
    [N. Perraudin et al., Astron.Comput. 27 (2019)]

[N. Anau Montel & C. Weniger, arXiv:2211.04291] 
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Source Detection using SBI — Results
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The shown results concern simulated data with a double-broken  using the best fit 
parameters derived in [Zechlin et al., Astrophys.J.Suppl. 225 (2016) 2, 18]!

dN/dS

Blue: true  of simulated target data
Orange: detected true sources using a cut on 

Red: false positives (misclassified background 
fluctuations) 
 
→ Overall false positive rate here: 7.5% of 
total detections.
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 and corresponding Fermi-LAT catalog 
to which our simulated data correspond  
→ Source positions and fluxes are different in  
     our target data!

dN/dS
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Improvement in number of detected sources 
with 12 years (4FGL-DR3) instead of 4 years. 
 
→ Sources are flagged if the background is 
     very bright at their position or they could be  
     false positives. 
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We use the same exposure as 4FGL-DR3. 
 
→ Our catalog loses efficiency of ~100%  
     around , comparable 
     to flagged 4FGL-DR3.  
 
→ In the dim-source regime, it performs  
     like 3FGL.
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Parameter inference in our SBI framework
p(

θ)

θ
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prior truncation

parameter inference
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The parameter inference scheme of our SBI framework allows to perform sequential inference in 
multiple training rounds based on the results of the previous round.

Reminder relevant parameters:

dN
/d

S

S

n1

n2
n3

Sb,1
Sb,2

AS

diffuse foreground isotropic background
1 10 100 1000 10000 1 10 100 1000 10000

+A +B

Involves analytic  
prescription or  
neural networks to  
compress data and  
derive a summary 
statistic.
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Parameter inference in our SBI framework — Results
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1st round: Amortised information (universally applicable to any target data set) with parameter 
correlations; summary statistic: convolutional neural network
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(a) hybrid, Nh
b = 2, posterior

(b) hybrid, Nh
b = 2, profile likelihood

Figure 9. (a) Triangle plot of the Bayesian posterior and (b) corresponding profile likelihood functions of the sampling parameters. The
data have been fit using the hybrid approach with two free breaks (Nh

b = 2) and a node. The use of line styles and colors follows Figure 6.
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[Zechlin et al., Astrophys.J.Suppl. 225 (2016) 2, 18]preliminary
Parameter correlations and 
posteriors profiles 
recovered compared to 
previous work.
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Parameter inference in our SBI framework — Results
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5th round: Only valid with respect to target data; summary statistic: convolutional neural network
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AS [s cm2 sr−1 ] 3.5+1.6
−1.0 3.3+0.6

−1.3

Sb,1 [s−1 cm−2] 2.1+0.9
−1.2 × 10−8 1.65+1.0

−0.6 × 10−8

Sb,2 [s−1 cm−2] 5.6+5.6
−5.1 × 10−12 4.8+0.2

−4.5 × 10−12

n1 3.11+0.69
−0.55 2.88+0.24

−0.39

n2 1.97+0.03
−0.03 1.96+0.03

−0.03

n3 −0.61+1.13
−0.89 0.24+1.74

−0.35

A 1.072+0.004
−0.004 1.010+0.010

−0.007

B 0.9+0.3
−0.3 0.9+0.1

−0.1

• Despite being derived 
from different target data, 
the reconstructed 68% 
credible intervals are 
consistent with each 
other, SBI may even 
perform better on some 
parameters.

• The input  is 
almost perfectly 
reconstructed.

dN/dS

68% CL

[Zechlin et al., Astrophys.J.Suppl. 225 (2016) 2, 18]

preliminary

this  
work

1p-PDF
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Summary and outlook

• Unblinding of the pipeline, i.e., application to the Fermi-LAT sky. 

• Extending the framework to multiple energy bins and consequently multiple source classes with  
characteristic spectral shapes. 

• On-the-fly sampling of diffuse Milky Way foreground from uncertainty of gas structure. 
[A. Ramírez et al., arXiv:2407.02410]
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• We presented an SBI scheme that is features a realistic simulator of Fermi-LAT data. It is 
currently able to localise bright sources in binned all-sky gamma-ray data and to infer the 
underlying parameters of the model components. Obtaining at the same time catalog and 
population parameters is a novelty!  

• The efficiency of our SBI source catalog does not reach the one of 4FGL-DR3 but it is compatible 
once flagged sources are removed while we achieve 3FGL efficiency for dim sources. 

• The parameter inference scheme works with the same precision as previous methods (1p-PDF, 
computer vision) but offers advantages as diffuse background components are inferred self-
consistently without prior fit!

The road so far:

Future prospects:

https://doi.org/10.48550/arXiv.2407.02410
mailto:eckner@lapth.cnrs.fr
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A word about the diffuse emission
Product of charged cosmic rays interactions within the Milky Way:

— primary cosmic rays  accelerated and injected at source site

— propagate through the Milky Way (diffusion, convection, diffusive re-acceleration,  
     popular solvers: GALPROP, DRAGON)

— interactions with gas (hadronic processes, Bremsstrahlung) and radiation fields (inverse 
     Compton)


(p, e±)
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Pohl et al. (2008)
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Fig. 7. Comparison of both our gas surface density construtions (top left and top right) with those of Nakanishi & Sofue (2006) (bottom left) and
Pohl et al. (2008) (bottom right).

However, looking at the mean of the posterior alone can be
misleading as some of the localised features also have a rather
large uncertainty. Unlike the previous deprojections, however,
we now have a means of judging the validity of certain features
by comparing the mean µ of the posterior with its uncertainty �.
To this end, we define a signal-to-noise ratio (S/N) as µ/�. We
show S/N in Fig. 6, again for the BEG03 model in the top panel
and in the bottom panel for the SBM15 model. One can clearly
identify localised emission with a S/N ratio of 3 or higher. In
Fig. 6, we have also overlaid the spiral arms, as determined from
fits to a set of ⇠ 200 masers Reid et al. (2019). (See their Tbl. 2
for the fitted spiral parameters.) Many of the local emission fea-
tures obtained for either gas flow model can be easily associated
with a spiral arm: for the BEG03 model for all spiral arms, but
most impressively for the Norma, Sagittarius-Carina, Local and
Perseus arms. We comment on a couple of noteworthy di↵er-
ences and similarities between the significant features obtained
for the BEG03 and the SBM15 models:

– The gas density in the SBM15 model is generally more scat-
tered and does not cluster in regions as large as the emission

in the BEG03 model. This is again due to the presence of lo-
cal extrema in the radial velocity field in the BEG03 model
which boost the clustering. Such local extrema are all but ab-
sent in the SBM15 model and hence the gas density is less
clustered.

– Yet, some of the spiral arms are obvious also for the SBM15
model, e.g. the segments along the Scutum-Centaurus and
the Sagittarius-Carina arms for galacto-centric azimuths '
between ⇠ 200� and ⇠ 280�. Other examples are the seg-
ments along the Norma arm (90� . ' . 150�), the local arm
(330� . ' . 0�).

– Some emission, in particular beyond the solar circle, is
placed at di↵erent distances in the BEG03 and SBM15 mod-
els due to the di↵erent rotation curves adopted here. Given
the rather small velocity gradient, this easily translates into
di↵erences of the order of a kiloparsec and thus a↵ects
the association with spiral arms. One example is emission
around ` ⇠ 110� and with 3LSR between �60 and �50 km/s,
see Fig. 2, bottom panel. With the BEG03 model, this emis-
sion is located around (x, y) = (10,�6) kpc. With the SBM15
gas flow, this instead ends up at (x, y) = (9.5,�5) kpc. In the
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IV. LOCAL RADIATION DENSITY

The radiation density in the Galaxy can far exceed
the CMB. The main component is star light (SL) which,
however, is partly processed by dust to form infrared ra-
diation (IR). In Fig. 2 we show the estimated spectral
energy distribution of these components in the Galaxy
near the solar neighborhood [61–63]. The IR energy den-
sity is comparable to the CMB whereas the SL provides
about 2.6 times more energy. At smaller galactocentric
distances, the non-CMB contributions are much larger.

Another way of estimating the importance of star light
is to use the total galactic luminosity of about 5⇥1010 L�
and, if the source were concentrated at the galactic cen-
ter, would provide ⇢EM/⇢CMB ⇠ (12 kpc/r)2. Of course,
the disk geometry requires a detailed model, e.g., the one
of the GALPROP code [63] that we used for Fig. 2.

The corresponding �� refractive index is shown in
Fig. 3 as a function of the test-photon energy. For

FIG. 2: Interstellar radiation field in the Galaxy near the Sun
[61, 62], consisting of the CMB, infrared radiation (IR) and
star light (SL). (Extracted from the GALPROP code [63] and
available in Ref. [64].)

FIG. 3: Photon-photon dispersion in the solar neighborhood
based on the EM radiation field components shown in Fig. 2.

! . 200 GeV, all background radiations contribute es-
sentially with their Euler-Heisenberg strength, whereas
for higher energies, first the star light and then the in-
frared radiation drop out. The CMB contribution be-
comes small and finally negative only at ! & 2000 TeV.

V. OTHER EFFECTS

Photon-photon refraction leads to deflection, e.g., in
the radiation field of the Sun. In the Euler-Heisenberg
limit and for photons grazing the Sun, we find an energy-
independent deflection of 6.7⇥10�24 arcsec, much smaller
than the gravitational deflection of 1.75 arcsec. Photon-
photon dispersion matters only in the context of �-ALP
oscillations where interference with the ALP dispersion
enhances the e↵ect
In the early universe, there is a brief epoch when ��

dispersion dominates. As the universe cools, the e+e�

density is ne�e+ = 21/2(meT/⇡)3/2e�me/T , producing
!2
pl = 4⇡↵ne�e+/me = 6.08⇥ 109 eV2(T/me)3/2e�me/T .

Photons provide �EM = 1.676⇥ 10�16 T 4
keV, correspond-

ing to m2
e↵ = �2�EM!2 and a thermal average hm2

e↵i ⇠
�3.47 ⇥ 10�9 eV2 T 6

keV. This is similar to �!2
pl at

T = 30 keV, in agreement with the crossover shown
in Fig. 3.6 of Ref. [50]. The cosmic e/� ratio is about
5.3⇥ 10�10 so that !2

pl = 2.32⇥ 10�8 eV2 T 3
keV. It takes

over from �� dispersion at T ⇠ 2 keV.
Therefore, in the primordial plasma, �� dispersion

dominates when 2 keV . T . 30 keV, providing photons
with a spacelike dispersion relation. Note, however, that
the photon gas does not support longitudinal excitations
and does not contribute to Debye screening [49].
We also mention a recent study of the impact of

photon-photon interaction on the polarization of CMB
photons after recombination [65], although the e↵ect
looks extremely small. Photon-photon interaction is a
polarization-dependent e↵ect and therefore can lead to
nontrivial birefringence e↵ects [66, 67].

VI. CONCLUSIONS

A photon gas is a dispersive medium for photon propa-
gation. The ubiquitous CMB alone produces nrefr = 1 +
0.511⇥ 10�42, independently of energy if ! . 1000 TeV.
This tiny e↵ect dominates the dispersion of TeV gamma
rays and, while it has always been ignored, can modify
the oscillation between TeV gamma rays and axionlike
particles in astrophysical magnetic fields.
If the energies of the background photons exceed the

pair-creation threshold, the dispersion e↵ect decreases,
i.e., soft background photons are more important. There-
fore, even though radiation in the Galaxy or the source
regions can far exceed the CMB, their harder spectra
prevent them from having a large impact on dispersion
except for relatively small energies of ! . 100 GeV. On
the other hand, �� dispersion is weaker for smaller !,

[Dobrynina et al.; PRD 95 (2017) 10]
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