

Univerza v Ljubljani

Co-funded by The European Union

Characterizing the *Fermi***-LAT high-latitude sky with simulation-based inference**

based on work in progress in collaboration with: N. Anau Montel, F. Calore, F. List, and C. Weniger

Christopher Eckner ([christopher.eckner@ung.si](mailto:eckner@lapth.cnrs.fr))

SMASH post-doctoral fellow

University of Nova Gorica, Center for Astrophysics and Cosmology, Slovenia

TeVPA 2024

26th - 30th of August 2024 | University of Chicago, USA

Fundamental physics

The high-energy gamma-ray sky seen over the decades (space-borne telescopes).

Understanding the gamma-ray sky

Striving for model complexity is expensive

The curse of dimensionality in Bayesian inference problems:

Simulation-based inference (*swyft***) to the rescue!**

Class 0: Scrambled (data, parameter) pairs In a nutshell: We train a neural network as a binary classifier to tell us if in a pair (X,Z) Z generated X which **only requires a forward model of the physics involved.**

Our approach: Verify and benchmark the performance of our SBI approach on wellknown terrain before addressing more complex questions about the LAT sky!

Optimal science case: Exploring the properties of the high-latitude gamma-ray sky

Why?

- Much less affected by Galactic diffuse emission than, e.g., the Galactic center.
- 2. Limited number of gamma-ray source classes present (majority of extragalactic origin).
- 3. Well-tested science case: Opportunity for performance of cross-checks!
- 4. Science case: Composition of the IGRB \rightarrow Contribution of astrophysical/exotic source classes.

Objective: Infer the **source-count distribution** of high-latitude sources and the astrophysical diffuse gamma-ray emission and **localise the bright part of the population (detection)**.

Source-count distribution dN/dS **:** # of sources N per $d\Omega$ with integral flux in $(S, S + dS)$.

Objective: Infer the **source-count distribution** of high-latitude sources and the astrophysical diffuse gamma-ray emission and **localise the bright part of the population (detection)**.

Source-count distribution dN/dS **:** # of sources N per $d\Omega$ with integral flux in $(S, S + dS)$.

Forward simulator: d*N*/d*S* as multiply broken power law (norm, break positions and slopes)

- Flux S for single energy bin from 1 GeV to 10 GeV.
- Correction for PSF effects using effective PSF derived from data (**gtpsf**).
- Uses *Fermi*-LAT nonuniform exposure.

Objective: Infer the **source-count distribution** of high-latitude sources and the astrophysical diffuse gamma-ray emission and **localise the bright part of the population (detection)**.

Source-count distribution dN/dS **:** # of sources N per $d\Omega$ with integral flux in $(S, S + dS)$.

Forward simulator: d*N*/d*S* as multiply broken power law (norm, break positions and slopes)

Source Detection using SBI — Method

[\[N. Anau Montel & C. Weniger, arXiv:2211.04291\]](https://arxiv.org/abs/2211.04291)

Source detection in SBI language:

Given the actual observed sky, what is the probability of observing a source at a certain position with flux S exceeding a certain threshold S_{th} ?

$$
r(\Omega, S_{\text{th}}; x) = \frac{p(\mathbb{I}_x(S \ge S_{\text{th}}) = 1, \Omega | x)}{p(\mathbb{I}_x(S \ge S_{\text{th}}) = 1, \Omega)}
$$

Source Detection using SBI — Method

The shown results concern simulated data with a double-broken $\mathrm{d}N/\mathrm{d}S$ using the best fit

parameters derived in [\[Zechlin et al., Astrophys.J.Suppl. 225 \(2016\) 2, 18\]](https://doi.org/10.3847/0067-0049/225/2/18)!

Blue: true dN/dS of simulated target data **Orange:** detected true sources using a cut on $r(\Omega, S_{\text{th}}; x)$

Red: false positives (misclassified background fluctuations)

 \rightarrow Overall false positive rate here: 7.5% of total detections.

The shown results concern simulated data with a double-broken $\mathrm{d}N/\mathrm{d}S$ using the best fit

parameters derived in [\[Zechlin et al., Astrophys.J.Suppl. 225 \(2016\) 2, 18\]](https://doi.org/10.3847/0067-0049/225/2/18)!

Blue: true dN/dS of simulated target data **Orange:** detected true sources using a cut on $r(\Omega, S_{\text{th}}; x)$

Red: false positives (misclassified background fluctuations)

 \rightarrow Overall false positive rate here: 7.5% of total detections.

 dN/dS and corresponding *Fermi*-LAT catalog to which our simulated data correspond

→ *Source positions and fluxes are different in our target data!*

The shown results concern simulated data with a double-broken $\mathrm{d}N/\mathrm{d}S$ using the best fit

parameters derived in [\[Zechlin et al., Astrophys.J.Suppl. 225 \(2016\) 2, 18\]](https://doi.org/10.3847/0067-0049/225/2/18)!

Blue: true dN/dS of simulated target data **Orange:** detected true sources using a cut on $r(\Omega, S_{\text{th}}; x)$

Red: false positives (misclassified background fluctuations)

 \rightarrow Overall false positive rate here: 7.5% of total detections.

Improvement in number of detected sources with 12 years (4FGL-DR3) instead of 4 years.

 \rightarrow Sources are flagged if the background is very bright at their position or they could be false positives.

The shown results concern simulated data with a double-broken $\mathrm{d}N/\mathrm{d}S$ using the best fit

parameters derived in [\[Zechlin et al., Astrophys.J.Suppl. 225 \(2016\) 2, 18\]](https://doi.org/10.3847/0067-0049/225/2/18)!

Blue: true dN/dS of simulated target data **Orange:** detected true sources using a cut on $r(\Omega, S_{\text{th}}; x)$

Red: false positives (misclassified background fluctuations)

 \rightarrow Overall false positive rate here: 7.5% of total detections.

We use the same exposure as 4FGL-DR3.

- **→ Our catalog loses efficiency of ~100%** around $S=10^{-9}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}$, comparable **to flagged 4FGL-DR3.**
- **→ In the dim-source regime, it performs like 3FGL.**

Parameter inference in our SBI framework

The **parameter inference** scheme of our SBI framework allows to perform **sequential inference** in multiple training rounds **based on the results of the previous round**.

Parameter inference in our SBI framework — Results 17

1st round: Amortised information (universally applicable to any target data set) with parameter correlations; summary statistic: convolutional neural network

TeVPA I U Chicago I 27th August 2024

 $F = \mathbf{F} \cdot \mathbf{F} = \mathbf{F} \cdot$ data have been fitte the hybrid approach with two fitte structure and κ

Parameter inference in our SBI framework — Results

5th round: Only valid with respect to target data; summary statistic: convolutional neural network

Summary and outlook

The road so far:

- We presented an SBI scheme that is features a **realistic simulator of** *Fermi***-LAT data.** It is currently able to **localise bright sources** in binned all-sky gamma-ray data and to **infer the underlying parameters** of the model components. **Obtaining at the same time catalog and population parameters is a novelty!**
- The efficiency of **our SBI source catalog** does not reach the one of 4FGL-DR3 but it is **compatible once flagged sources are removed** while we achieve 3FGL efficiency for dim sources.
- The **parameter inference** scheme works with the **same precision as previous methods** (1p-PDF, computer vision) but offers advantages as **diffuse background** components are **inferred selfconsistently without prior fit**!

Future prospects:

- **Unblinding** of the pipeline, i.e., application to the *Fermi*-LAT sky.
- Extending the framework to **multiple energy bins** and consequently multiple source classes with characteristic spectral shapes.
- On-the-fly **sampling** of diffuse Milky Way foreground from **uncertainty of gas structure.** [\[A. Ramírez et al., arXiv:2407.02410\]](https://doi.org/10.48550/arXiv.2407.02410)

Backup slides

A word about the diffuse emission The radiation density in the Galaxy can fact the Galaxy can fact the Galaxy can fact the Galaxy can fact the s the CMB. The main component is star light (SL) which,

Product of charged cosmic rays interactions within the Milky Way: energy distribution of the Galaxy distribution of the Galaxy components in the Galaxy components in the Galaxy near the solar neighborhood [61–63]. The IR energy den-

- $-$ primary cosmic rays (p,e^{\pm}) accelerated and injected at source site $\mathsf{S}\mathsf{O}\mathsf{U}\mathsf{I}\mathsf{C}\mathsf{G}$ site
- propagate through the Milky Way (diffusion, convection, diffusive re-acceleration, popular solvers: GALPROP, DRAGON) Iffusive re-acceleration. is to use the total galactic luminosity of about 5⇥10¹⁰ *^L*
- **interactions with gas** (hadronic processes, Bremsstrahlung) and **radiation fields** (inverse Compton) θ and rediction fields ang) ang **ragianon nek** nverse In the early universe, there is a brief epoch when

TeVPA | U Chicago | 27th August 2024 Christopher Eckner, [ceckner@ung.si](mailto:eckner@lapth.cnrs.fr) **21**

 \cdot Eckner, ceckner@una.si with those of Na

comes small and finally negative only at ! & 2000 TeV.