

Norwegian University of **Science and Technology**

Do the LHAASO Galactic diffuse emission data require a contribution from unresolved sources?

Presented by: Vittoria Vecchiotti

Based on work done in collaboration with: G. Peron, E. Amato, G. Morlino, S. Menchiari, F. L. Villante and G. Pagliaroli

TeV Particle Astrophysics, 26-30 August 2024, Chicago

- 1. Galactic gamma-ray diffuse emission model;
- 2. Source model, compatibility with LHAASO KM2A measurements, unresolved source contribution;

Cataldo et al. Astrophys.J. 904 (2020)

3. Comparisons with LHAASO diffuse emission measurements.

Vecchiotti et al (2024), in preparation

LHAASO diffuse emission measurements:

 $\varphi_{\gamma\text{,diff}}^{LHAASO}$

The LHAASO collaboration provided a measurement of the Galactic diffuse γ -ray emission in the energy range 10 TeV to 1 PeV in two sky regions by masking the contribution of known sources. *Z. Cao et al. 2023, Phys. Rev. Lett,131*

Diffuse gamma-ray emission:

1. Differential inelastic cross section of pp interaction.

2. Interstellar gas distribution in the Galaxy

$$
\varphi_{\gamma}(E_{\gamma},\hat{n}_{\gamma}) = \int_{E_{\gamma}}^{\infty} dE \frac{d\sigma(E,E_{\gamma})}{dE_{\gamma}} \int_{0}^{\infty} dl \varphi_{CR}(E,\bar{r}_{\odot}+l\hat{n}_{\gamma}) n_{H} (\bar{r}_{\odot}+l\hat{n}_{\gamma})
$$

3. Cosmic-ray energy and spatial distribution

1. Cross section:

 $f(E_{\gamma}) =$ E_{γ} ∞ dE $d\sigma(E,E_{\gamma}%)\equiv\int_{0}^{T}d\tau\int_{0}^{T}d\tau\int_{0}^{T}d\tau\int_{0}^{T}d\tau\int_{0}^{T}d\tau\int_{0}^{T}d\tau\int_{0}^{T}d\tau\int_{0}^{T}d\tau\int_{0}^{T}d\tau\int_{0}^{T}d\tau\int_{0}^{T}% d\tau\int_{0}^{T}d\tau\int_{0}^{T}d\tau\int_{0}^{T}d\tau\int_{0}^{T}d\tau\int_{0}^{T}% d\tau\int_{0}^{T}d\tau\int_{0}^{T}d\tau\int_{0}^{T}d\$ dE_{γ} $\varphi_{CR}(E$

We compare:

- different parameterization based on different MC codes SIBYLL, QGSJET, Pythia8, and Geant4 (*Kafexhiu et al 2014*);
- SIBYLL (*Kelner et al 2006*);
- AAFRAG based on QGSJET-II-04m (*M. Kachelriess et al 2022*)

We compare:

- different parameterization based on different MC codes SIBYLL, QGSJET, Pythia8, and Geant4 (*Kafexhiu et al 2014*);
- SIBYLL (*Kelner et al 2006*);
- AAFRAG based on QGSJET-II-04m (*M. Kachelriess et al 2022*)

We compare:

- different parameterization based on different MC codes SIBYLL, QGSJET, Pythia8, and Geant4 (*Kafexhiu et al 2014*);
- SIBYLL (*Kelner et al 2006*);
- AAFRAG based on QGSJET-II-04m (*M. Kachelriess et al 2022*)

Assumptions cross section:

We take AAFRAG for the fiducial case and SIBYLL (*Kafexhiu et al 2014*) to include uncertainties.

TeV Particle Astrophysics, 26-30 August 2024, Chicago

Assumption CR spectrum:

We take the data-driven CR spectrum from *Dembinski et al 2018* for the fiducial case and **Protons (KASKADE)** + *Dembinski et al 2018* to include uncertainties.

Assumption CR spectrum:

We take the data-driven CR spectrum from *Dembinski et al 2018* for the fiducial case and **Protons (KASKADE)** + *Dembinski et al 2018* to include uncertainties.

g(r) is determined by the distribution of the CR sources f_s (\vec{r}) (proportional to the SNR number density by Green et al. (2015), and by the propagation of CR in the Galactic magnetic field.

Assumption CR spectrum:

We take the data-driven CR spectrum from *Dembinski et al 2018* for the fiducial case and **Protons (KASKADE)** + *Dembinski et al 2018* to include uncertainties.

g(r) is determined by the distribution of the CR sources f_s (\vec{r}) (proportional to the SNR number density by Green et al. (2015), and by the propagation of CR in the Galactic magnetic field.

2 cases: with and without spatially dependent CR spectral index (from the analysis of the FermiLAT data at ~ 20 GeV *Acero et al. (2016), Yang et al. (2016), Gaggero et al. (2018)*

$$
h(E,\vec{r}) = \left(\frac{E}{20 \text{ GeV}}\right)^{\Delta(\vec{r})}
$$

Comparison with LHAASO (standard diffusion):

LHAASO data can be explained by the "truly" diffuse emission in the outer region and in the inner region above ~ 30 TeV;

The contribution from unresolved sources must be negligible.

Pulsar Wind Nebulae population:

Cataldo et al. *Astrophys.J*. 904 (2020); Pagliaroli et al, *Universe*, 9,881 (2023)

We built a synthetic population of PWNe using the best fit of the maximum luminosity in the energy range 1 – 100 TeV: $L_{max} = 2.2 \times 10^{35}$ erg/s and the spin-down down timescale: $\tau_{sd} = 2.9$ kyrs derived from fitting the brightest sources of the HGPS.

Assumptions:

- Latitude, longitude, and radius are extracted from the Lorimer distribution that scales as $\exp(-|z|/H)$ with $H = 0.05$ kpc (it is the value that provides the best chi-square in the fit of HGPS data);
- The age of sources t_{age} is extracted uniformly in the interval [1,10^6] yr;
- The luminosity is calculated from: $L = L_{max} (1 +$ t_{age} τ_{sd} −2
- Spectrum: power-law with exponential cut-off ($E_{\text{cut}} = 100$ TeV), spectral index fixed to: 2.4.

Source contributions:

"The flux sensitivity is defined as the flux normalization required to have 50% probability of detecting a source at 5σ level"

At 50 TeV the differential threshold of point-like sources depends only mildly on the spectral assumption.

Def: Resolved sources: $\phi_{50} > \phi_{th,50}$, $\varphi[TeV^{-1}$ $cm^{-2}s^{-1}]$

- The predicted number and flux of resolved sources are compatible with the KM2A quantities within 2σ ;
- The unresolved source flux is suppressed by 91 % and 18 % in the inner and outer regions, respectively.

Comparison with LHAASO (standard diffusion):

The masks cancel out most of the unresolved source contributions. Unresolved sources contribute ~ 15% of the fiducial model at 50 TeV in both regions;

Effect of LHAASO masks on the hardening:

Def: hardening= spatially dependent CR spectral index

TeV Particle Astrophysics, 26-30 August 2024, Chicago

Effect of LHAASO masks on the hardening:

Def: hardening= spatially dependent CR spectral index

Ratio ϕ hardening $\phi_{standard}$ The ratio is *independent* of the cross-section, ISM and CR spectrum but it *depends* on the CR spatial distribution

- $g(r, R = \infty)$: The $\varphi_{\text{hardening}}$ produces 76 % more signal than $\varphi_{\text{standard}}$ at 500 TeV ;
- $g(r) = 1$: The φ _{hardening} produces 55% more signal than $\varphi_{\rm standard}$ at 500 TeV

After masking:

- $g(r, R = \infty)$: $\varphi_{\text{hardening}}$ produces 28 % more signal than $\varphi_{\text{standard}}$ at 500 TeV
- $g(r) = 1$: φ _{hardening} produces 18% more signal φ _{standard} at 500 TeV

TeV Particle Astrophysics, 26-30 August 2024, Chicago

Conclusions:

- 1. The total flux and the number of sources derived in *Cataldo et al 2019* based on the HGPS are compatible with the observation of KM2A within 2σ ;
- 2. The LHAASO masks cancel most of the effect due to unresolved sources in the inner region (suppressed by 91 %). In the outer region, unresolved sources already produce a negligible contribution to the diffuse emission that is further suppressed by the LHAASO mask of about 18 %;
- 3. The cross-section, CR spectrum, and ISM uncertainties are non-negligible. However, the LHAASO data seems compatible with the "truly" diffuse emission within uncertainties except for the 2 low energy points in the inner region which could be explained by introducing other classes of unresolved sources.
- 4. The LHAASO masks significantly reduce the effect of a spatial-dependent CR spectral index. As a consequence, it is challenging to test this hypothesis using LHAASO data.

Backup slides

Assumption CR spectrum:

We take the data-driven CR spectrum from *Dembinski et al 2018* for the fiducial case and **Protons (KASKADE)** + *Dembinski et al 2018* to include uncertainties.

TeV Particle Astrophysics, 26-30 August 2024, Chicago

Source contributions (Size 40 pc):

Best fit for size 40 pc: $L_{max} = 2 \times 10^{35}$ erg/s $\tau_{sd} = 4.6$ kyrs

Def: Resolved sources: $\phi_{50} > \phi_{th,50} \sqrt{(\sigma_{psf}^2 + \sigma_s^2)/\sigma_{psf}^2}$ where $\sigma_{psf} = 0.2^{\circ}$ and σ_s is the angular size of the source.

- The predicted number and flux of resolved sources are compatible with the KM2A quantities within 2σ (except in the outer region);
- The unresolved source flux is suppressed by 86 % and 20 % in the inner and outer regions, respectively.

Results:

Summary assumptions:

Assumptions for the diffuse emission fiducial model:

- CRs: *Dembinki et al 2018*;
- Gas: Galprop;
- Cross section: AAFRAG;
- CR spatial distribution of CR: $g\ (\vec{r}, \infty)$

Variation with respect to the fiducial model:

- CRs: fit protons (KASKADE) + All elements (*Dembinki et al 2018*);
- Gas: Dust;
- Cross section: Sybill;
- CR spatial distribution of CR: $g\ (\vec{r}, \infty)$

Assumptions unresolved sources:

- Spectrum: power-law with exponential cut-off ($E_{\text{cut}} = 100$ TeV), spectral index fixed to: 2.4.
- Thickness of the disk H=0.05 kpc.

Comparison with LHAASO (hardening effect):

• LHAASO cannot be used to distinguish the hardening hypothesis from the standard one;

Comparison with LHAASO (standard diffusion and size 40 pc):

- Unresolved sources contribute \sim 54% of the fiducial model at 50 TeV in both regions;
- The 40 pc size case corresponds to an upper limit for the unresolved source contribution.