

Norwegian University of Science and Technology

Do the LHAASO Galactic diffuse emission data require a contribution from unresolved sources?

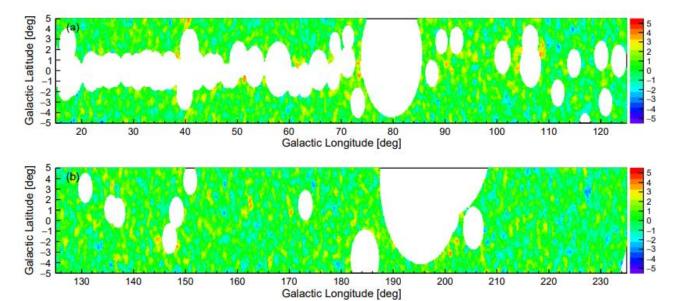
Presented by: Vittoria Vecchiotti

Based on work done in collaboration with: G. Peron, E. Amato, G. Morlino, S. Menchiari, F. L. Villante and G. Pagliaroli

Outline:

- 1. Galactic gamma-ray diffuse emission model;
- 2. Source model, compatibility with LHAASO KM2A measurements, unresolved source contribution;

Cataldo et al. Astrophys.J. 904 (2020)


3. Comparisons with LHAASO diffuse emission measurements.

Vecchiotti et al (2024), in preparation

LHAASO diffuse emission measurements:

The LHAASO collaboration provided a measurement of the Galactic diffuse γ -ray emission in the energy range 10 TeV to 1 PeV in two sky regions by masking the contribution of known sources. *Z. Cao et al. 2023, Phys. Rev. Lett, 131*

Do the LHAASO Galactic diffuse emission data are contaminated unresolved sources?

$$\frac{\varphi_{\gamma, \text{diff}}^{LHAASO}}{\varphi_{\gamma, \text{diff}}^{UnRes}} + \varphi_{\gamma, \text{diff}}$$

Population study H.E.S.S.

Models:

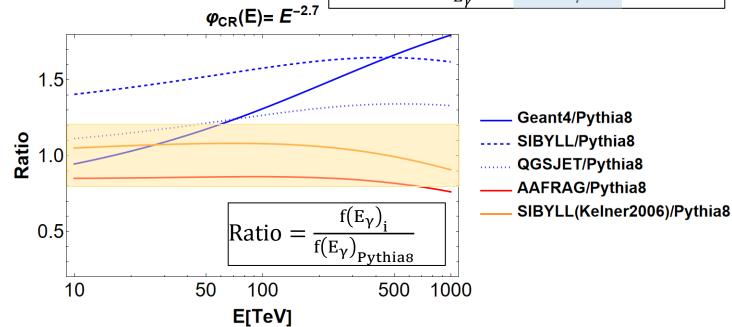
Assumptions on the CR spatial and energy distributions, cross-section, and ISM.

Diffuse gamma-ray emission:

1. Differential inelastic cross section of pp interaction.

2. Interstellar gas distribution in the Galaxy

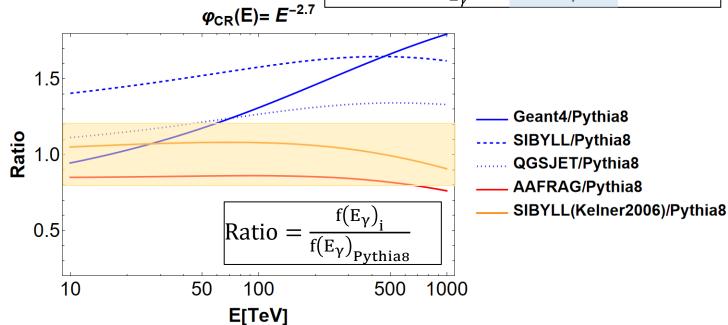
$$\varphi_{\gamma}(E_{\gamma}, \hat{n}_{\gamma}) = \int_{E_{\gamma}}^{\infty} dE \frac{d\sigma(E, E_{\gamma})}{dE_{\gamma}} \int_{0}^{\infty} dl \, \varphi_{CR}(E, \bar{r}_{\odot} + l\hat{n}_{\gamma}) n_{H} \, (\bar{r}_{\odot} + l\hat{n}_{\gamma})$$


3. Cosmic-ray energy and spatial distribution

$$f(E_{\gamma}) = \int_{E_{\gamma}}^{\infty} dE \frac{d\sigma(E, E_{\gamma})}{dE_{\gamma}} \varphi_{CR}(E)$$

We compare:

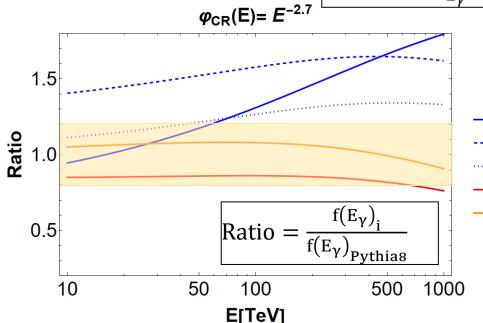
- different parameterization based on different MC codes SIBYLL, QGSJET, Pythia8, and Geant4 (Kafexhiu et al 2014);
- SIBYLL (Kelner et al 2006);
- AAFRAG based on QGSJET-II-04m (M. Kachelriess et al 2022)


$$f(E_{\gamma}) = \int_{E_{\gamma}}^{\infty} dE \frac{d\sigma(E, E_{\gamma})}{dE_{\gamma}} \varphi_{CR}(E)$$

We compare:

- different parameterization based on different MC codes SIBYLL, QGSJET, Pythia8, and Geant4 (Kafexhiu et al 2014);
- SIBYLL (Kelner et al 2006);
- AAFRAG based on QGSJET-II-04m (M. Kachelriess et al 2022)

$$f(E_{\gamma}) = \int_{E_{\gamma}}^{\infty} dE \frac{d\sigma(E, E_{\gamma})}{dE_{\gamma}} \varphi_{CR}(E)$$


We compare:

- different parameterization based on different MC codes SIBYLL, QGSJET, Pythia8, and Geant4 (Kafexhiu et al 2014);
- SIBYLL (Kelner et al 2006);
- AAFRAG based on QGSJET-II-04m (M. Kachelriess et al 2022)

Assumptions cross section:

We take AAFRAG for the fiducial case and SIBYLL (*Kafexhiu et al 2014*) to include uncertainties.

$$f(E_{\gamma}) = \int_{E_{\gamma}}^{\infty} dE \, \frac{d\sigma(E, E_{\gamma})}{dE_{\gamma}} \varphi_{CR}(E)$$

Geant4/Pythia8
SIBYLL/Pythia8
QGSJET/Pythia8
AAFRAG/Pythia8
SIBYLL(Kelner2006)/Pythia8

We compare:

- different parameterization based on different MC codes SIBYLL, QGSJET, Pythia8, and Geant4 (Kafexhiu et al 2014);
- SIBYLL (Kelner et al 2006);
- AAFRAG based on QGSJET-II-04m (M. Kachelriess et al 2022)

Assumptions cross section:

We take AAFRAG for the fiducial case and SIBYLL (*Kafexhiu et al 2014*) to include uncertainties.

2. ISM:

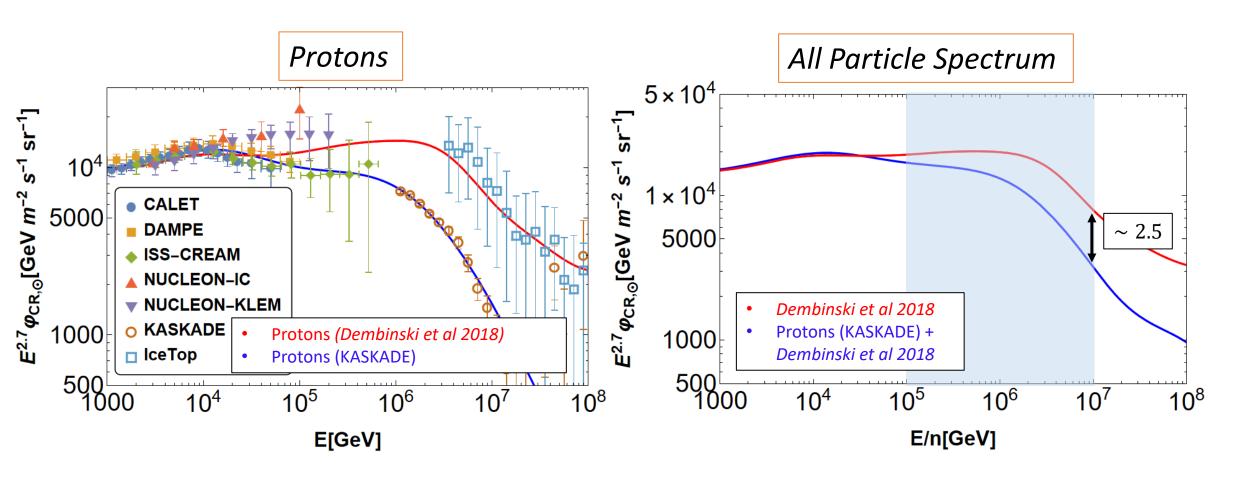
$$n_c = \frac{\int_{\Delta\Omega} d\Omega \int_0^\infty dl \, n_H \left(\bar{r}_{Sun} + l\hat{n}_{\gamma}\right)}{\Delta\Omega}$$

- Dust (masked):

 PLANCK
 (Aghanim et al. 2016)
- $n_{c,inner} = 7.85068 \times 10^{21} \ cm^{-2}$ $n_{c,outer} = 5.84937 \times 10^{21} \ cm^{-2}$
- Galprop (masked): $n_{c,inner} = 9.47769 \times 10^{21} \ cm^{-2}$ $n_{c,outer} = 8.72069 \times 10^{21} \ cm^{-2}$

Galprop provides $\sim 20\%$ more target than the dust in the inner region and $\sim 50~\%$ in the outer region

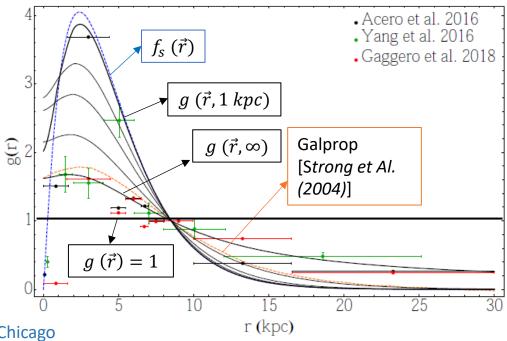
Assumptions ISM:


We take Galprop for the fiducial case and the Dust to include uncertainties.

3. Cosmic ray distribution:
$$\varphi_{CR}(E, \vec{r}) = \varphi_{CR,Sun}(E)g(\vec{r}, R)h(E, \vec{r})$$

3. Cosmic ray distribution: $\varphi_{CR}(E,\vec{r}) = \varphi_{CR,Sun}(E)g(\vec{r},R)h(E,\vec{r})$

We take the data-driven CR spectrum from *Dembinski et al 2018* for the fiducial case and **Protons (KASKADE)** + *Dembinski et al 2018* to include uncertainties.

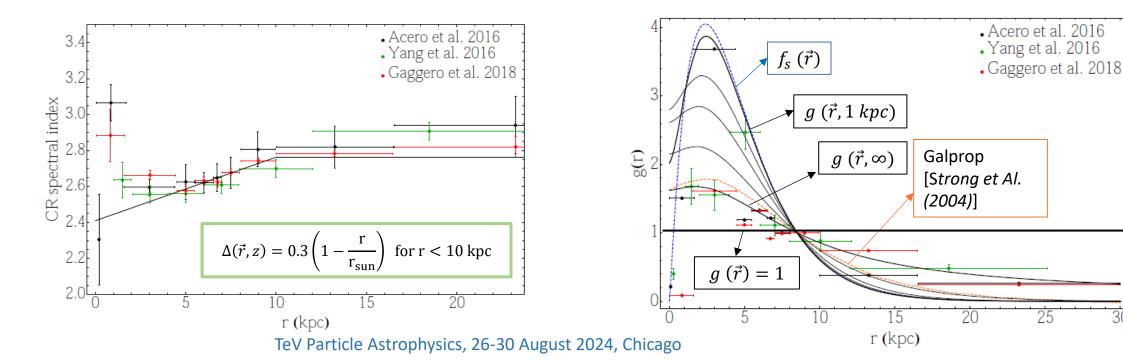

3. Cosmic ray distribution: $\varphi_{CR}(E,\vec{r}) = \varphi_{CR,Sun}(E)g(\vec{r},R)h(E,\vec{r})$

We take the data-driven CR spectrum from *Dembinski et al 2018* for the fiducial case and **Protons (KASKADE)** + *Dembinski et al 2018* to include uncertainties.

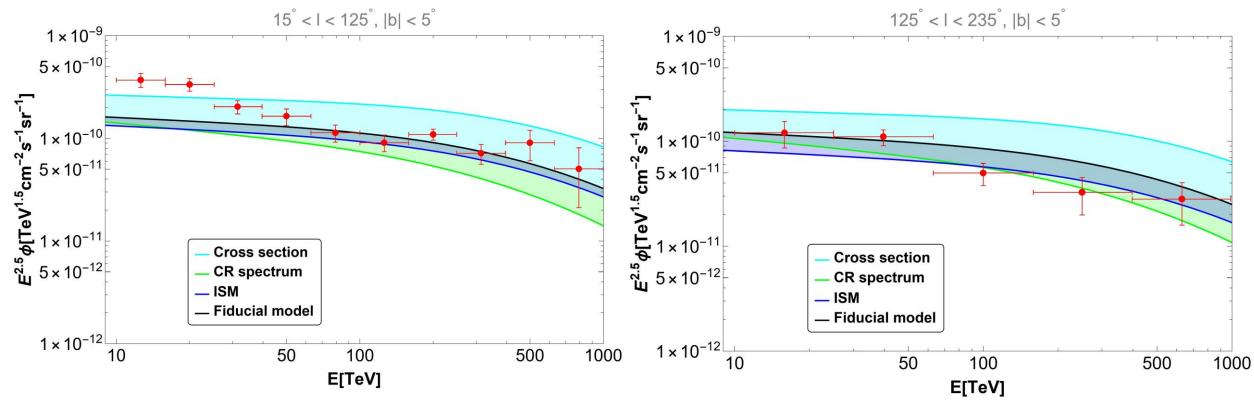
g(r) is determined by the distribution of the CR sources $f_s(\vec{r})$ (proportional to the SNR number density by Green et al. (2015), and by the propagation of CR in the Galactic magnetic field.

3. Cosmic ray distribution: $\varphi_{CR}(E, \vec{r}) = \varphi_{CR,Sun}(E)g(\vec{r}, R)h(E, \vec{r})$

We take the data-driven CR spectrum from *Dembinski et al 2018* for the fiducial case and **Protons (KASKADE)** + *Dembinski et al 2018* to include uncertainties.



g(r) is determined by the distribution of the CR sources $f_s(\vec{r})$ (proportional to the SNR number density by Green et al. (2015), and by the propagation of CR in the Galactic magnetic field.



2 cases: with and without spatially dependent CR spectral index (from the analysis of the FermiLAT data at $\sim 20~GeV$ Acero et al. (2016), Yang et al. (2016), Gaggero et al. (2018)

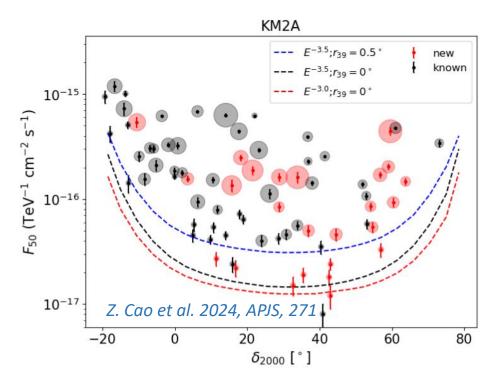
$$h(E, \vec{r}) = \left(\frac{E}{20 \ GeV}\right)^{\Delta(\vec{r})}$$

Comparison with LHAASO (standard diffusion):

LHAASO data can be explained by the "truly" diffuse emission in the outer region and in the inner region above ~ 30 TeV;

The contribution from unresolved sources must be negligible.

Pulsar Wind Nebulae population:

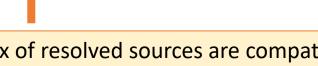

Cataldo et al. Astrophys. J. 904 (2020); Pagliaroli et al, Universe, 9,881 (2023)

We built a synthetic population of PWNe using the best fit of the maximum luminosity in the energy range 1-100 TeV: $L_{max}=2.2\times10^{35}$ erg/s and the spin-down down timescale: $\tau_{sd}=2.9$ kyrs derived from fitting the brightest sources of the HGPS.

Assumptions:

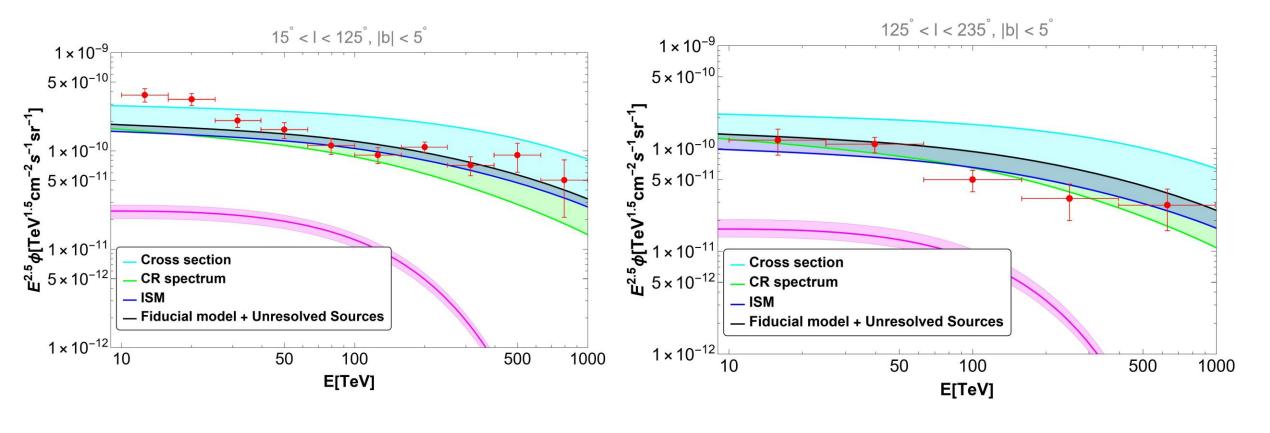
- Latitude, longitude, and radius are extracted from the Lorimer distribution that scales as $\exp(-|z|/H)$ with H=0.05 kpc (it is the value that provides the best chi-square in the fit of HGPS data);
- The age of sources t_{age} is extracted uniformly in the interval [1,10^6] yr;
- The luminosity is calculated from: $L = L_{max} \left(1 + \frac{t_{age}}{\tau_{sd}} \right)^{-2}$
- Spectrum: power-law with exponential cut-off ($E_{\rm cut}=100$ TeV), spectral index fixed to: 2.4.

Source contributions:

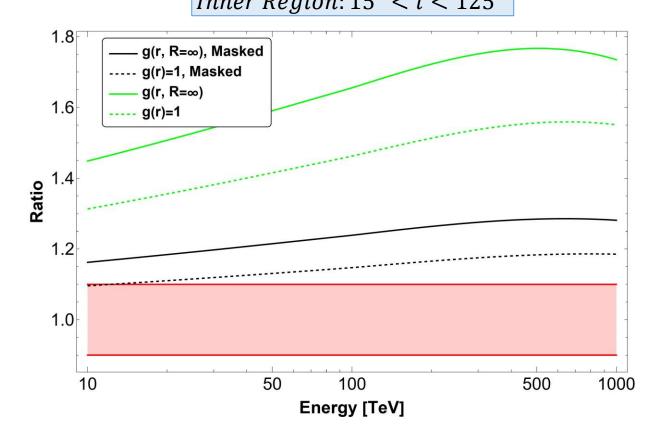

"The flux sensitivity is defined as the flux normalization required to have 50% probability of detecting a source at 5σ level"

At 50 TeV the differential threshold of point-like sources depends only mildly on the spectral assumption.

Def: Resolved sources: $\phi_{50} > \phi_{th,50}$, $\varphi[TeV^{-1} cm^{-2}s^{-1}]$

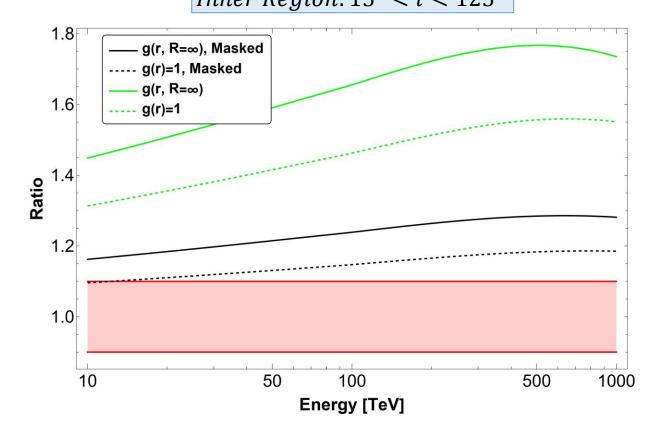

		$N_{ m R}$	$arphi_{ m R}$	$arphi_{ m UNR}$	$arphi_{ ext{UNR,H}}$
$15^{\circ} < l < 235^{\circ}$	MC	84^{+7}_{-5}	$1.69^{+0.62}_{-0.43} \times 10^{-14}$	$2.82^{+0.15}_{-0.14} \times 10^{-15}$	_
	KM2A	76	1.72×10^{-14}	_	_
$15^{\circ} < l < 125^{\circ}$	MC	73^{+5}_{-8}	$1.32^{+0.37}_{-0.33} \times 10^{-14}$	$2.56^{+0.14}_{-0.16} \times 10^{-15}$	$2.23^{+0.34}_{-0.36} \times 10^{-16}$
	KM2A	59	1.44×10^{-14}	_	_
$125^{\circ} < l < 235^{\circ}$	MC	12^{+3}_{-2}	$2.82^{+1.8}_{-1.1} \times 10^{-15}$	$2.53^{+0.46}_{-0.35} \times 10^{-16}$	$2.08^{+0.49}_{-0.34} \times 10^{-16}$
	KM2A	16	2.74×10^{-15}	_	_

Results:


- The predicted number and flux of resolved sources are compatible with the KM2A quantities within 2σ ;
- The unresolved source flux is suppressed by 91 % and 18 % in the inner and outer regions, respectively.

Comparison with LHAASO (standard diffusion):

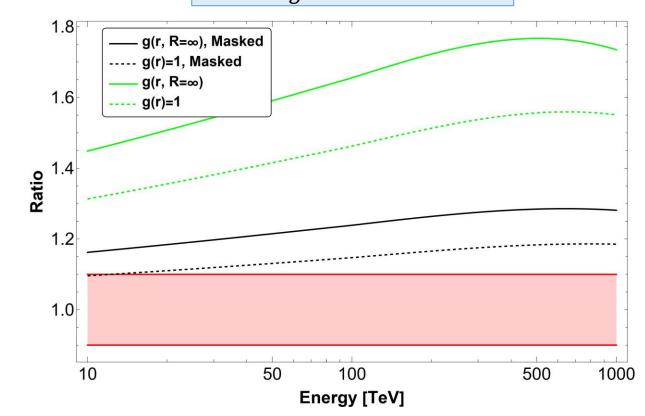
• The masks cancel out most of the unresolved source contributions. Unresolved sources contribute $\sim 15\%$ of the fiducial model at 50 TeV in both regions;


Inner Region: $15^{\circ} < l < 125^{\circ}$

$$Ratio = \frac{\phi_{hardening}}{\phi_{standard}}$$

The ratio is *independent* of the cross-section, ISM and CR spectrum but it *depends* on the CR spatial distribution

Inner Region: $15^{\circ} < l < 125^{\circ}$


$$Ratio = \frac{\phi_{hardening}}{\phi_{standard}}$$

The ratio is *independent* of the cross-section, ISM and CR spectrum but it *depends* on the CR spatial distribution

- $g(r, R = \infty)$: The $\phi_{hardening}$ produces 76 % more signal than $\phi_{standard}$ at 500 TeV;
- g(r) = 1: The $\phi_{hardening}$ produces 55% more signal than $\phi_{standard}$ at 500 TeV

Def: hardening= spatially dependent CR spectral index

Inner Region: $15^{\circ} < l < 125^{\circ}$

$$Ratio = \frac{\phi_{hardening}}{\phi_{standard}}$$

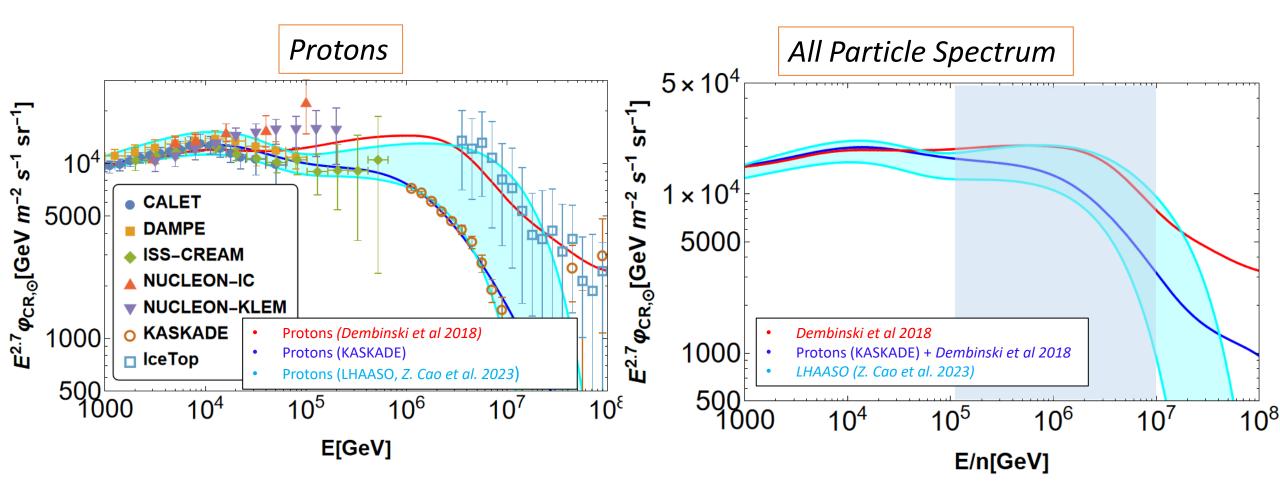
The ratio is *independent* of the cross-section, ISM and CR spectrum but it *depends* on the CR spatial distribution

- $g(r, R = \infty)$: The $\phi_{hardening}$ produces 76 % more signal than $\phi_{standard}$ at 500 TeV;
- g(r) = 1: The $\phi_{hardening}$ produces 55% more signal than $\phi_{standard}$ at 500 TeV

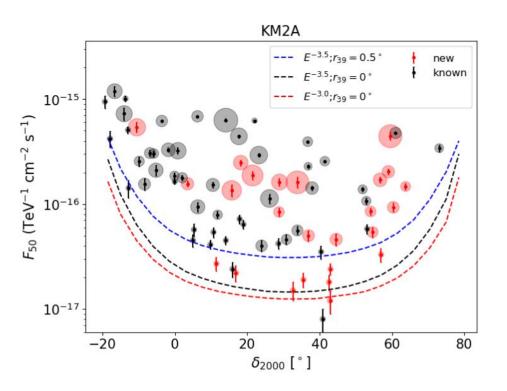
After masking:

- $g(r, R = \infty)$: $\phi_{hardening}$ produces 28 % more signal than $\phi_{standard}$ at 500 TeV
- g(r) = 1: $\phi_{hardening}$ produces 18% more signal $\phi_{standard}$ at 500 TeV

Conclusions:


- 1. The total flux and the number of sources derived in *Cataldo et al 2019* based on the HGPS are compatible with the observation of KM2A within 2σ ;
- 2. The LHAASO masks cancel most of the effect due to unresolved sources in the inner region (suppressed by 91 %). In the outer region, unresolved sources already produce a negligible contribution to the diffuse emission that is further suppressed by the LHAASO mask of about 18 %;
- 3. The cross-section, CR spectrum, and ISM uncertainties are non-negligible. However, the LHAASO data seems compatible with the "truly" diffuse emission within uncertainties except for the 2 low energy points in the inner region which could be explained by introducing other classes of unresolved sources.
- 4. The LHAASO masks significantly reduce the effect of a spatial-dependent CR spectral index. As a consequence, it is challenging to test this hypothesis using LHAASO data.

Backup slides


3. Cosmic ray distribution: $\varphi_{CR}(E,\vec{r}) = \varphi_{CR,Sun}(E)g(\vec{r},R)h(E,\vec{r})$

We take the data-driven CR spectrum from *Dembinski et al 2018* for the fiducial case and **Protons (KASKADE)** + *Dembinski et al 2018* to include uncertainties.

Source contributions (Size 40 pc):

Best fit for size 40 pc: $L_{max} = 2 \times 10^{35}$ erg/s $\tau_{sd} = 4.6$ kyrs

Def: Resolved sources: $\phi_{50} > \phi_{th,50} \sqrt{(\sigma_{psf}^2 + \sigma_s^2)/\sigma_{psf}^2}$ where $\sigma_{psf} = 0.2^\circ$ and σ_s is the angular size of the source.

		$N_{ m R}$	$arphi_{ m R}$	$arphi_{ m UNR}$	$arphi_{ ext{UNR,H}}$
$15^{\circ} < l < 235^{\circ}$	MC	69^{+5}_{-5}	$2.28^{+0.74}_{-0.56} \times 10^{-14}$	$7.17^{+0.37}_{-0.45} \times 10^{-15}$	_
	KM2A	76	1.72×10^{-14}	_	_
$15^{\circ} < l < 125^{\circ}$	MC	62^{+4}_{-6}	$1.76^{+0.47}_{-0.45} \times 10^{-14}$	$6.10^{+0.37}_{-0.41} \times 10^{-15}$	$8.19^{+1.74}_{-1.64} \times 10^{-16}$
	KM2A	59	1.44×10^{-14}	_	_
$125^{\circ} < l < 235^{\circ}$	MC	7^{+2}_{-1}	$4.21^{+3.4}_{-1.8} \times 10^{-15}$	$1.05^{+0.25}_{-0.27} \times 10^{-15}$	$8.32^{+2.49}_{-1.99} \times 10^{-16}$
	KM2A	16	2.75×10^{-15}	_	_

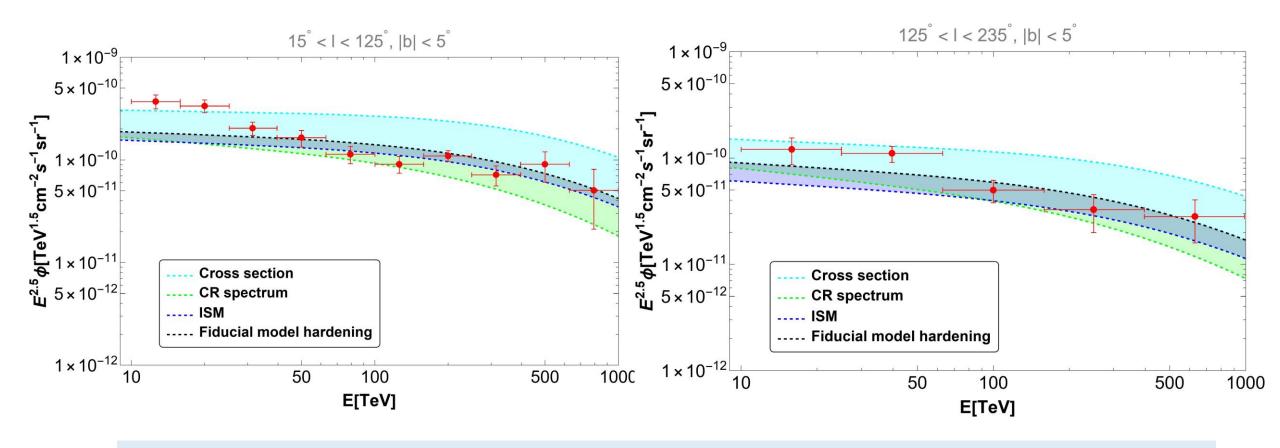
Results:

- The predicted number and flux of resolved sources are compatible with the KM2A quantities within 2σ (except in the outer region);
- The unresolved source flux is suppressed by 86 % and 20 % in the inner and outer regions, respectively.

Summary assumptions:

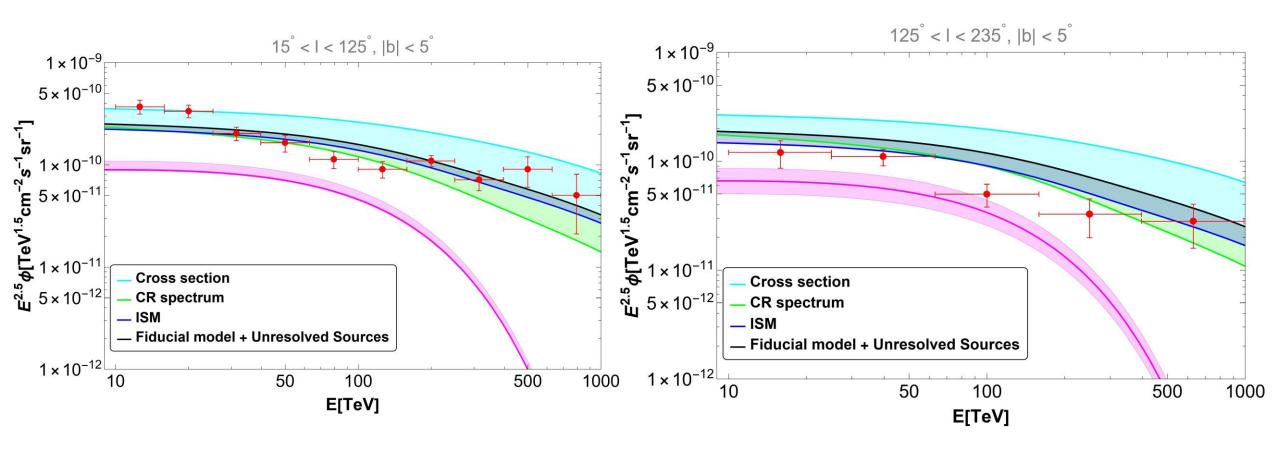
Assumptions for the diffuse emission fiducial model:

- CRs: Dembinki et al 2018;
- Gas: Galprop;
- Cross section: AAFRAG;
- CR spatial distribution of CR: $g(\vec{r}, \infty)$


Variation with respect to the fiducial model:

- CRs: fit protons (KASKADE) + All elements (Dembinki et al 2018);
- Gas: Dust;
- Cross section: Sybill;
- CR spatial distribution of CR: $g(\vec{r}, \infty)$

Assumptions unresolved sources:


- Spectrum: power-law with exponential cut-off ($E_{\rm cut}=100$ TeV), spectral index fixed to: 2.4.
- Thickness of the disk H=0.05 kpc.

Comparison with LHAASO (hardening effect):

LHAASO cannot be used to distinguish the hardening hypothesis from the standard one;

Comparison with LHAASO (standard diffusion and size 40 pc):

- Unresolved sources contribute $\sim 54\%$ of the fiducial model at 50 TeV in both regions;
- The 40 pc size case corresponds to an upper limit for the unresolved source contribution.