

Jet Contribution to the y-ray Luminosity in NGC1068

DFG

TeVPA 2024, University of Chicago Silvia Salvatore Ruhr-Universität Bochum

Two Zones Model

AGN corona and disk + starburst

- ALMA observations
- Significant difference in gamma-ray and neutrino flux for energies between 100 GeV and 10 TeV

Two Zones Model

AGN corona and disk + starburst

- ALMA observations
- Significant difference in gamma-ray and neutrino flux for energies between 100 GeV and 10 TeV

Two Zones Model

AGN corona and disk + starburst

- ALMA observations
- Significant difference in gamma-ray and neutrino flux for energies between 100 GeV and 10 TeV

Introducing the Jet

Radio data

Gallimore et al., 2004, ApJ, 613, 794

Michiyama et al., 2022, ApJL, 936, L1

Introducing the Jet

Radio data

Gallimore et al., 2004, ApJ, 613, 794

Michiyama et al., 2022, ApJL, 936, L1

Introducing the Jet

Radio data

Gallimore et al., 2004, ApJ, 613, 794

Michiyama et al., 2022, ApJL, 936, L1

How to Produce High Energy Photons from these Knots?

Possible γ -ray production scenarios:

• Leptonic scenario \rightarrow Inverse Compton (constrained by the jet radio data)

 Hadronic scenario → py interactions pp interactions

(constrained by the jet power)

Photon Fields

Spectral distribution of the energy densities

Distance dependance of the energy densities at ν_0

Leptonic Scenario

Salvatore, S. et al., 2024, A&A								
	z	$r_{\rm k}$	$\nu_{\rm obs}$	$v_{\rm obs}L_{v_{\rm obs}}$	α	$B_{\rm eq}(k = 100)$		
	[pc]	[pc]	[GHz]	[10 ³⁶ erg/s]		[mG]		
С	15	0.2	5	6.4	0.23	15.4		
NE	30	0.3	5	9.5	0.90	10.9		
P1	484	3.5	92	7.6	0.50	1.40		
P2	477	3.5	92	8.6	0.59	1.40		
P3	468	3.5	92	8.8	0.65	1.40		
P4	468	3.5	92	7.5	0.50	1.40		

Salvatore, S. et al., 2024, A&A								
	z	$r_{\rm k}$	$v_{\rm obs}$	$v_{\rm obs}L_{v_{\rm obs}}$	α	$B_{\rm eq}(k = 100)$		
	[pc]	[pc]	[GHz]	[10 ³⁶ erg/s]		[mG]		
С	15	0.2	5	6.4	0.23	15.4		
NE	30	0.3	5	9.5	0.90	10.9		
P1	484	3.5	92	7.6	0.50	1.40		
P2	477	3.5	92	8.6	0.59	1.40		
P3	468	3.5	92	8.8	0.65	1.40		
P4	468	3.5	92	7.5	0.50	1.40		

SFB1491

L D (1 10	
$z r_k v_{obs} v_{obs} L_{v_{obs}} \alpha B_{eq}(k = 10)$)0)
$[pc]$ $[pc]$ $[GHz]$ $[10^{36} erg/s]$ $[mG]$	
C 15 0.2 5 6.4 0.23 15.4	
NE 30 0.3 5 9.5 0.90 10.9	
P1 484 3.5 92 7.6 0.50 1.40	
P2 477 3.5 92 8.6 0.59 1.40	
P3 468 3.5 92 8.8 0.65 1.40	
P4 468 3.5 92 7.5 0.50 1.40	

SFB1491

Salvatore, S. et al., 2024, A&A								
	z	$r_{\rm k}$	$v_{\rm obs}$	$v_{\rm obs}L_{v_{\rm obs}}$	α	$B_{\rm eq}(k = 100)$		
	[pc]	[pc]	[GHz]	[10 ³⁶ erg/s]		[mG]		
С	15	0.2	5	6.4	0.23	15.4		
NE	30	0.3	5	9.5	0.90	10.9		
P1	484	3.5	92	7.6	0.50	1.40		
P2	477	3.5	92	8.6	0.59	1.40		
P3	468	3.5	92	8.8	0.65	1.40		
P4	468	3.5	92	7.5	0.50	1.40		

SFB1491

Only knot C with 2 criteria are needed:

$$B \sim 1 \text{ mG} << B_{eq}$$
softening of the electron spectrum
$$at \gamma_{e} = \left[\frac{3\nu_{IC,Iow}}{4\nu_{tor}}\right] = 4 \times 10^{4}$$

 γ_{e}^{break}

 10^{3}

Ye

10¹⁰

 10^{6}

 $r_{\rm C}/c$

 10^{4}

105

Hadronic Scenario

Photomeson Production

$$v_{p\gamma}L_{v_{p\gamma}} = r_k E_{\gamma}^2 A_{p\gamma} f_{jet} P_{jet} \gamma_p^{-q_p-2}$$

$$\int_{\epsilon_{i}/2\gamma_{p}}^{\infty} d\epsilon n_{ph}(\epsilon) \frac{f(\gamma_{p},\epsilon)}{\epsilon^{2}}$$

where

$$A_{p\gamma} = \frac{\zeta_{\gamma} \sigma_{\pi\gamma}^{s,m} (2-q_p)}{48\pi m_p^2 c^4 \chi_{\gamma} (\gamma_{p,max}^{2-q_p} - \gamma_{p,min}^{2-q_p})}$$

The predicted luminosity is orders of magnitude lower than what observed in the Fermi-LAT range.

Hadronic Scenario

Hadronic Pion Production

SFB1491

f_{jet} P_{jet} q_p γ_{p,min} γ_{p,max} n_{gas}

$$v_{pp}L_{v_{pp}} = \begin{pmatrix} n_{gas}r_{k} \\ cm^{-2} \end{pmatrix} E_{v}^{2}A_{pp}f_{jet}P_{jet} - \begin{pmatrix} c \\ v_{k} \end{pmatrix} \int_{0}^{r} dE_{\pi}x$$

$$= \begin{pmatrix} E_{\pi} \\ m_{\pi}c^{2} \end{pmatrix}^{(1-4q_{p})/3} \left[\begin{pmatrix} E_{\pi} \\ m_{\pi}c^{2} \end{pmatrix}^{(1-4q_{p})/3} - 1 \right]^{0.53} \times \left[E_{\pi}^{2} - m_{\pi}^{2}c^{4} \right]^{-1/2}$$
where
$$A_{pp} = \frac{2.89 \times 10^{-26}(2-q_{p})}{m_{\pi}m_{p}c^{4}(y_{p,max}^{2-q_{p}} - y_{p,min}^{2-q_{p}})}$$

Hadronic Spectra

Sub-pc Scales Emission Sites?

Optical thickness evolution for different r_k evolution scenarios

Conclusions

Salvatore, S. et al., 2024, A&A

• The jet can explain the Fermi-LAT gamma-rays only under very specific conditions:

Leptonic scenario \rightarrow knot C (~ 15 pc from BH) : $\gg B \leq 1 \, \text{mG}$

> strong softening of electron spectrum at ~ 10 GeV

Lenain et al. (2010) : $d_{k-tor} = 65 \text{ pc}$ these conditions don't hold \rightarrow $r_k = 7 pc$ under the assumption of B = 0.1 mGknot emission

Hadronic scenario \rightarrow

hadronic pion production: we need $n_{gas} \ge 10^4 \text{ cm}^{-3}$ to explain 10 GeV signal (in agreement with Fang et al. (2023)), but the sub-GeV signal is not explained

Silvia Salvatore - Ruhr-Universität Bochum

DFG