Deep observations of the starburst galaxy M82 with VERITAS

VERITAS VERITAS

Lob Saha for the VERITAS collaboration

Smithsonian Astrophysical Observatory

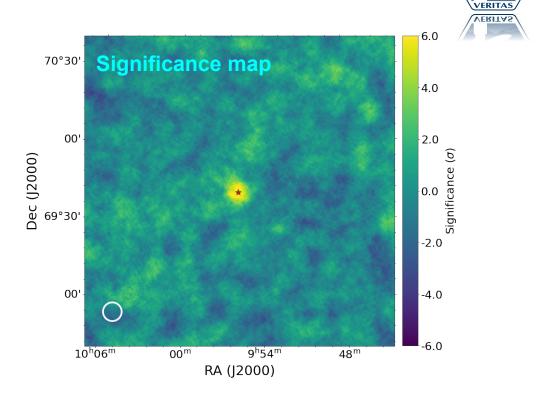
TeVPA, Chicago, Aug 26-30, 2024

About the source M 82 (also known as NGC 3034 or Cigar Galaxy)

VERITAS

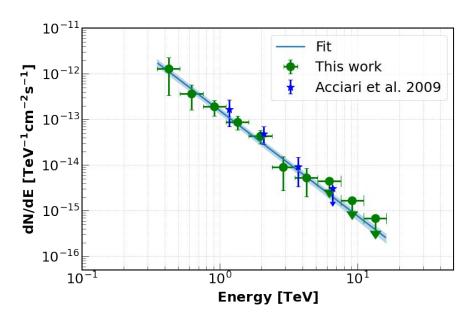
- Distance ⇒ ~12 million light years from Earth (~3.6 Mpc)
- Hundreds of massive stars (~10⁴ to ~10⁶ M_o) clusters in this starburst region
- Star formation rate ⇒ ~10x faster than Milks
- Supernova rate ⇒ ~0.1 to ~0.3 per
- High number gas density ⇒ ~200/cm³

A potential target for gamma-ray observations


Results

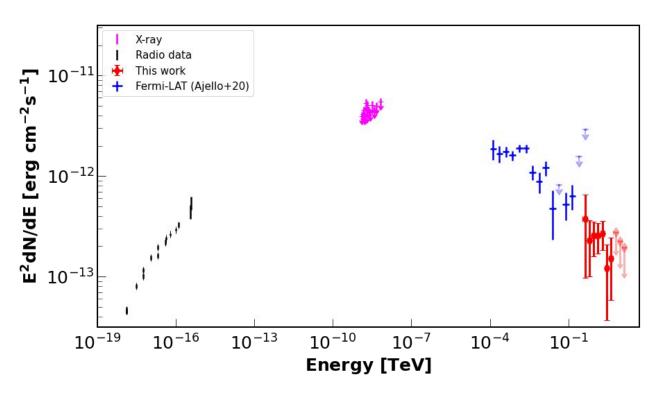
~254 h good-quality data in ~15 yrs

of gamma events: ~135


of background events: ~372

Significance(σ): 6.5

Results



$$\Gamma$$
 = 2.31 ± 0.26
Norm @ 1.4 TeV = (7.17 ± 1.23)x10⁻¹⁰ TeV⁻¹ m⁻² s⁻¹

Flux > 450 GeV: ~0.4% of Crab Nebula flux

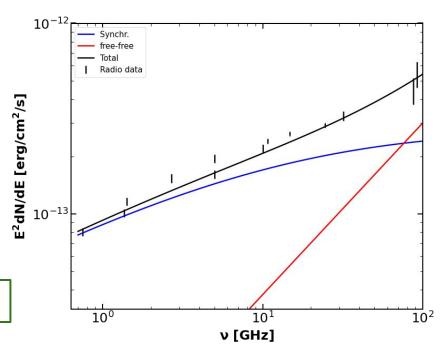
Multi-wavelength observations

Emission mechanisms:

- Leptonic
- Hadronic

Leptonic scenario

Radio data


Parameters of the radiation modelling

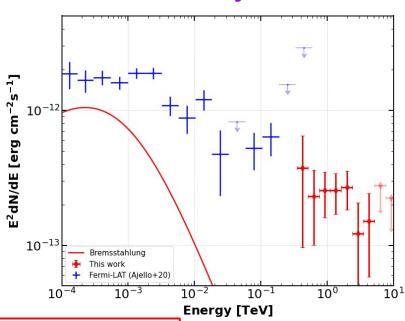
- Neutral gas density: 200 cm⁻³
- Ionized gas density: 50 cm⁻³
- Magnetic energy density: 500 eV cm⁻³
- Particle energy density: 500 eV cm⁻³

• Fit to radio data/spectrum

- Synchrotron emission
- Free-free emission
- Electron injection with Q~E⁻².25

Reasonable match between model and data

Leptonic scenario


- Neutral gas density: 200 cm⁻³
- Ionized gas density: 50 cm⁻³
- Magnetic energy density: 500 eV cm⁻³
- Particle energy density: 500 eV cm⁻³

• Fit to GeV-scale data

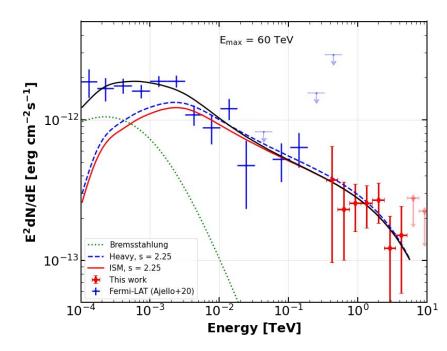
- non-thermal bremsstrahlung
- inverse-Compton
- Bremsstrahlung rapidly falls off with energy:
 - 80% of flux at 0.15 GeV
 - 30% of flux at 1 GeV
- Inverse-Compton flux below 10%

VERITAS

Gamma-ray data

The leptonic scenario is disfavored

Hadronic scenario


- Parameters of the radiation modelling
 - Neutral gas density: 200 cm⁻³
 - Ionized gas density: **50 cm**⁻³
 - Magnetic energy density: 500 eV cm⁻³
 - Particle energy density: **500 eV cm**⁻³
- Assume particle spectrum is a power law in momentum
- Gamma-ray production calculated with DPMJET III (Bhatt et al. 2020)
- Two different compositions (target gas & cosmic rays)
 - ISM
 - Heavy (enriched by starburst winds + SN explosions)

Components	ISM	Heavy
Hydrogen	0.909	0.848
Helium	0.090	0.146
Carbon	2.1e-4	5.2e-3
Oxygen	1.6e-4	7.e-4

Hadronic scenario

- Heavy Composition:
 - Higher sub-GeV gamma ray flux
 - Uncertainties too large for composition conclusions
- Pion decay+Bremsstrahlung:
 - Reasonable match for a power-law index s=2.25
- The maximum energy is poorly constrained

Summary

- Extensive VERITAS observations: $\sim 6.5\sigma$ in ~ 254 h; $\Gamma = 2.31 \pm 0.26$; $\sim 0.4\%$ Crab
- Higher significance => Improved spectrum => Better constraints on SED modelling
- Purely leptonic scenario is a poor representation of the gamma-ray SED
- Hadronic scenario is clearly preferred
- A lepto-hadronic scenario with a power-law spectrum (index s ≈ 2.25), and with significant bremsstrahlung below 1 GeV, provides a good match to the observed SED
- CR source spectrum has index s=2.25 (similar to SNRs)