LST-1 follow-up of the exceptionally bright gamma-ray burst GRB 221009A

Kenta Terauchi (Kyoto University)

Arnau Aguasca-Cabot, Alessandro Carosi, Alice Donini, Susumu Inoue, Yuri Sato, Monica Seglar-Arroyo, for the CTAO LST Collaboration

Email: terauchi.kenta.74s@st.kyoto-u.ac.jp

GRB221009A ~BOAT~

- Extremely bright GRB (Brightest Of All Time)
 - Redshift z = 0.151 (724 Mpc)
 - $E_{\gamma, \text{ iso}} \approx 1.0 \times 10^{55} \text{ erg}$
 - Once-in-a-10,000-year event

2

TeV Emission from GRB221009A

Detection up to 13 TeV by LHAASO experiment

Break in LHAASO lightcurve suggests a jetbreak

Emission at >10⁵ s comes from outer component of the jet?

Structured Jet Model

- Structured jet models are widely discussed to explain MWL data of GRB221009A
 - Narrow core + wide wing
 - Interesting comparison with GW/GRB 170817A (Explained by off-axis structured jet)

10⁻²

0.3-5TeV ×10⁵

0.1-10GeV ×10³ 0.3-10keV ×10⁰

> ×10⁻¹ ×10^{-2.5}

 $\times 10^{-2}$

×10^{-2.5}

 $\times 10^{-3.5}$

 $\times 10^{-4}$

10.5

10.4

10-6

10⁻⁸

10⁻¹⁰

10⁻¹²

10.14

10⁻¹⁶

10⁻¹⁸

10-20

10⁸

107

Latetime TeV observations provide clues to test different structured jet models

Cherenkov Telescope Array Observatory (CTAO)

- Cherenkov Telescope Array Observatory
 - Detect gamma rays by imaging air Cherenkov light
 - Cover wide energy range from 20 GeV to 300 TeV
 - 10 times better sensitivity compared to current IACT instruments
- CTAO consists of 3 types of telescopes
 - Large-Sized Telescope (LST) ← **This talk**
 - Medium-Sized Telescope (MST)
 - Small-Sized Telescope (SST)

Credit: Gabriel Perez Diaz

Large-Sized Telescope (LST)

- LSTs are optimized for observing transient and extragalactic sources
 - Low energy threshold (20 GeV)
 - Fast repositioning (< 20 s)
 - Better sensitivity on short timescales compared to Fermi-LAT
- The prototype of the LST (LST-1) started scientific operations since Oct. 2019 (H. Abe et al. 2023)

LST-1 Observation of GRB221009A

- LST-1 observation took place from 1.3 d to 19 d after the burst onset
 - The promptest observation among IACTs
 - ~3 h of strong moon time observation
 - ~10 h of dark time observation

J.D. Mbarubucyeye et al. (ICRC2023)

LST-1 Observation of GRB221009A

- The observation includes both strong moon and dark time data
 - Moon (~3 h)
 - Dedicated analysis
 - Energy threshold: hundreds of GeV
 - Dark (~10 h)
 - Standard analysis
 - Energy threshold: tens of GeV

J.D. Mbarubucyeye et al. (ICRC2023)

Signal Search (Angular Distribution)

- A hint of detection with ~4 σ excess on Oct. 10 (1.3 d after the burst onset)
 - Consistent results are obtained with independent analysis methods
- No significant excess for Oct. 12 and later dark times

Theta: angular distance between gamma-ray like events and source position 9

SED (Moon Data)

- 1D spectral analysis was performed with *gammapy*
 - SEDs shown below are **not** corrected for EBL absorption
- Power-law with EBL absorption was assumed for the spectral analysis
 - Intrinsic power-law index was fixed to 2.0
 - EBL model: Dominguez (z = 0.151)
- Due to moonlight, the lower energy bound of SED is 200 GeV

SED (Dark Data)

- No presence of the moon allowed computing SED down to 50 GeV
- Possible systematics on background normalization
 - ±0.5% systematics are taken into account based on LST-1 performance paper (H. Abe et al. 2023)
 - Effect gets larger as the energy decreases

Light Curve

- LST-1 light curve shown below are corrected for EBL absorption
- LST-1 upper limits are compatible with H.E.S.S. upper limts
 - Earliest upper limits among IACTs (1.3 d after the burst onset)
- Assuming the excess on Oct. 10 (${\sim}10^5~{\rm S}$) is real, it is consistent with extrapolation of LHAASO light curve
 - Model independent insight from LST-1 observations

Comparison with Modeling Results

- LST-1 upper limits disfavor the model reported by Zheng+24
 - At least parameter space is constrained
- Models by Zhang+23 and Ren+24 reproduce well the LST-1 signal, if we assume the signal is real
 - Ren+24: Latetime TeV emission from **inner jet** dominates
 - Zhang+23: Latetime TeV emission from **outer jet** dominates

Summary

- GRB221009A is an extremely bright GRB which occurred relatively close to Earth
 - Early TeV emission is detected by LHAASO
 - Structured jet models are discussed for explaining MWL data
- LST-1 performed follow-up observations of GRB221009A from 1.3 d after the burst trigger
 - The promptest observation among IACTs
- LST-1 obtained a hint of detection with 4σ excess on Oct. 10
 - Validated with two independent analysis method
- LST-1 results test the structured jet models reported
 - LST-1 upper limits disfavor the model by Zheng+24
 - Models by Zhang+23 and Ren+24 reproduce well the LST-1 signal, if we assume the signal is real

Backup

Entire View of Analysis Flow

Analysis Method

Source-independent Method

- Use reconstructed position of the source
- Valid for diffuse and point-like sources

Source-**dependent** Method

- Use true position of the source
- Assume source/OFF positions
- Only valid for point-like sources
- Better energy resolution and smaller bias at low energies

LST-1 Lightcurve of GRB221009A

- Upper limits are calculated, considering the extragalactic background light (EBL) absorption
 - TeV photons interact with EBL in optical and infrared wavelength
 - Redshift z = 0.151
 - EBL model: Dominguez et al. (2011)

Comparison with Other Measurements

- H.E.S.S. upper limits are extrapolated to LST-1 energy range
 - Original energy range: 0.65 10 TeV (Assumed index = 2.0)
- LST-1 upper limits constrain models which predict TeV flux higher than extrapolation of the LHAASO lightcurve

J.D. Mbarubucyeye et al. (ICRC2023)

• cf.) Zheng et al. (arxiv:2310.12856)

F. Aharonian et al 2023 ApJL 946 L27

Constrain Surrounding Environment

Latetime upper limits can be used to contrain density profile of interstellar medium or circumstellar medium

Zheng et al. (arxiv:2310.12856)

SED at T0+2.5 days

Figure 1. Spectra energy distribution of the afterglow emission at T_0 + 2.5 days. The red points denote the 95% C.L. upper limits from H.E.S.S. Collaborations. The blue, red and black lines represent the afterglow models with density $n_0 = 0.1 \text{cm}^{-3}$, $n_0 = 0.01 \text{cm}^{-3}$ and $n_0 = 0.001 \text{cm}^{-3}$, respectively. The corresponding values of $\epsilon_{\rm B}$ are 3×10^{-4} , 1×10^{-3} and 4×10^{-3} , respectively for the three lines. Other parameters are $E_{\rm II,iso} = 2.2 \times 10^{53} \text{erg}$, p = 2.4, $\epsilon_{\rm e} = 0.1$, and $\xi_e = 0.1$.

Zheng et al. (arxiv:2310.12856)

*Energy range of H.E.S.S. upper limits: 0.65 – 10 TeV

Fig. 9.2 Source-dependent parameters.

Figure 3. Definition of basic image parameters.

Investigation of Background Systematics

Events with r < 0.8 m (1.6 deg) are used for the analysis

Investigation of Background Systematics

Distribution of shower gravity for OFF events

- Strange spots can be seen in shower gravity map below
 - Still investigating the cause

r: Distance between camera center and shower gravity

Events with r < 0.8 m (1.6 deg) are used for the analysis

Determine the cut in r

- Intensity > 50
- Alpha < 20 deg
- gh eff. = 80%
- Duplicated events removed

Standard deviation/mean of off counts (Noff = 3)

Cut of r < 0.8 is applied for later analysis