Construction of the Very High Energy Gamma-Ray Spectrum in Centaurus A Based on Filamentary Jet Model

Yasuko S. Honda

Kindai University Technical College, Mie Japan Co-author: Mitsuru Honda

TeVPA, Chicago,

August 26-31, 2024

Outline

- 1. Centaurus A
- 2. Jet Morphology
- 3. Filamentary Jet Model
- 4. Acceleration of Electrons
- 5. Refined SSC (Synchrotron Self-Compton) Scenario
- 6. Effects of Radiative Cooling
- 7. Spectral Fitting
- 8. Summary

Centaurus A (NGC5128) ① Feature

□ The nearest active galaxy (d=3.8 Mpc: Harris et al. 2006)

resolved in the range from radio to gamma-rays

- radio emitting core: < 10⁻² pc
- jet and counter-jet: ~ pc
- jet and inner lobes: ~ kpc
- giant outer lobes: hundreds of kpc

Optical image (ESO, WFI)

Red: radio Green: infrared Blue: X -ray (M. Hardcastle)

Centaurus A (2) **Unnatural hardening of VHE**

H.E.S.S. Collaboration, 2020

Centaurus A (3) Model of the spectrum

- Fanaroff-Riley Class I (FR-I) Radio Galaxy
 - ← mis-aligned BL Lac

SSC (Synchrotron Self-Compton) Model **Conventional single-zone SSC cannot explain the hardening** of VHE gamma-rays \rightarrow not favored ! (e.g.) Chiaberge et al. (2001) **EC (External Compton) Model** dust, starlight, ... \rightarrow candidate (e.g.) Tanada et al. (2019)

Jet Morphology (Radio and X-rays) Knot-like Structure detected by radio and X-rays

Radio (VLA) Burns et al. (1983)

X-rays (Chandra) Kraft et al. (2002)

Jet Morphology (Gamma-Rays)

Gamma-rays are detected at the extended region of the jet.

H.E.S.S. Collaboration 2020

The source of particle acceleration is distributed within the quite wide range.

- Stochastic acceleration
- Shear acceleration

Contour : Radio (VLA) Color-scale : Gamma-rays (H.E.S.S.)

Filamentary jet model

Jet is comprised of the bunch of current filaments.

□ Filamentation

•Collision of shocks, Instabilities

D magnetic field generation

 Toroidal magnetic field is induced around the filaments with various transverse sizes.

$$B = B_m \left(\frac{\lambda}{D}\right)^{(\beta-1)/2}$$

- λ : width of a filament
- β : turbulent spectral index

Acceleration Processes

Electrons are trapped with the magnetic field of each filament.

Numerous filaments with various sizes are present in a knot.

□ Shock wave passes through the jet.

→ observed as knots (or blobs)

Electrons are accelerated stochastically being back and forth across the shock (DSA).

Cutting edge of the jet

Acceleration and Energy Restriction

Maximum energy of accelerated electrons is determined by the temporal or spatial limit.

A multi-zone SSC Scenario

Superposing synchrotron spectra by the accelerated

electrons from the filaments with various sizes

Schematic view of constructing spectrum

Effects of Radiative Cooling

It is more natural to consider some kind of radiative losses

in filamentary jet model.

$$\frac{u_{\rm rad}}{u_{\rm m}} = a \left(\frac{\lambda}{D}\right)$$

a < 1: constant
λ : filament width
D: Maximum Size of filament

Spectral fitting 1 knots and diffuse region

Knots: Filamentary model +KN+Cooling Diffuse Region: Fully developed turbulence \Rightarrow one-zone SSC

Spectral Fitting (2) Total

Black solid curve is sum Of the knot A, B, and Diffuse region. All of them are including IC+KN+cooling effects. It is well accommodated with the H.E.S.S. and Fermi fluxes > 100 GeV.

Summary

- The major origin of the spectral hardening of the VHE fluxes
- is ascribed to the DSA + SSC + filament model within the reasonable parameter range.
- **The maximum Lorentz factor of electrons reaches** $\sim 10^9$.
- **The** γ -ray variability can be estimated as

$$\tau = t_{syn} \sim 4.2 \text{ yr} \text{ (at 20 GeV)}$$

might be resolved by CTA in future ...