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● Constant emission along travel (box function)
● Proportional to electric charge
● Amplification when measured at: 
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Microscopic Simulations

Radio Emission

● Vector potential A calculated for every electron in the EAS:

● For every electron, we require:
○ Calculation of R: distance to observer
○ Calculation of 𝜃: angle to observer from direction of travel v
○ Calculation of n: index of refraction
○ Calculation of neff : average line of sight integral of (1-n):

○ Time binning of A at observer

Can be approximated analytically (more later, maybe)

Computationally expensive!



Practical and Accurate Approach
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4-D Binning

Practical and Accurate Approach

● Treat e± tracks within 4-D volumes 
as effective single tracks

● Reduces number of computations 
by a factor N, the number of tracks 
contained in an average volume

● Preliminary cell size based on Fraunhofer limit:

● Essentially, a thinning oriented towards radio emission
○ Standard particle thinning is blind to radio calculations
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OctTree Binning

Practical and Accurate Approach

● Fraunhofer condition dependent on both frequency and distance to observer
○ Less efficiency for precision at higher frequencies/closer observation

● Cells are bisected until they pass the Fraunhofer limit



● Let’s define emission from the center 
of a track:

○

○
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Effective Treatment

Practical and Accurate Approach
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Effective Treatment
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● Let’s define emission from the center 
of a track:
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○ f

● Sum current (in x, y, z) over tracks:
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Effective Treatment

Practical and Accurate Approach

● Let’s define emission from the center 
of a track:

○

○ f

● Sum current (in x, y, z) over tracks:

● Average position, velocity,  𝜟t over tracks:



Time

A

29

Effective Treatment

Practical and Accurate Approach

● Let’s define emission from the center 
of a track:

○

○ f

● Sum current (in x, y, z) over tracks:

● Average position, velocity,  𝜟t over tracks: ● Calculate t’eff and 𝜟t’eff  



Time

A

30

Effective Treatment

Practical and Accurate Approach

● Let’s define emission from the center 
of a track:

○

○ f

● Sum current (in x, y, z) over tracks:

● Average position, velocity,  𝜟t over tracks: ● Calculate t’eff and 𝜟t’eff  

● Project summed current (Vector Potential):



Time

A

31

Effective Treatment

Practical and Accurate Approach

● Let’s define emission from the center 
of a track:

○

○ f

● Sum current (in x, y, z) over tracks:

● Average position, velocity,  𝜟t over tracks: ● Calculate t’eff and 𝜟t’eff  

● Project summed current (Vector Potential):

● Divide VP over 𝜟t’eff  



Time

A

32

Effective Treatment

Practical and Accurate Approach

● Let’s define emission from the center 
of a track:

○

○ f

● Sum current (in x, y, z) over tracks:

● Average position, velocity,  𝜟t over tracks: ● Calculate t’eff and 𝜟t’eff  

● Project summed current (Vector Potential):

● Divide VP over 𝜟t’eff  



Example Performance
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34 Performance

30-80MHz

Shower Parameters:
• Primary: proton
• E: 1EeV
• B: 43𝜇T, 23° inclination
• 𝜃: 70°, 𝜑: 0°
• 10-6 thinning
• L = 0.5LF



100-300MHz

Shower Parameters:
• Primary: proton
• E: 1EeV
• B: 43𝜇T, 23° inclination
• 𝜃: 70°, 𝜑: 0°
• 10-6 thinning
• L = 0.5LF

35 Performance



36 Performance

30-1000MHz

Shower Parameters:
• Primary: proton
• E: 1EeV
• B: 43𝜇T, 23° inclination
• 𝜃: 70°, 𝜑: 0°
• 10-6 thinning
• L = 0.5LF



● Basic methodology works well for low 
frequencies
○ Peak E field within 10%
○ Beam pattern captured well 

(geomagnetic/Askaryan)

● Significant performance improvements
○ Average tracks/cell: ~20
○ Maximum tracks/cell: 200,000

● Lower accuracy at high frequencies
○ In particular for large viewing angles
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Improvements
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● Smaller cells
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○ Less spread in vector potential (average 

treatment works better)
○ Considerable computational resources
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● Smaller cells
○ Less spread in vector potential (average 

treatment works better)
○ Considerable computational resources

■ Expect #tracks ∝ L3, but closer to L 
in practice

● To combat this, consider cuts in lateral 
distance
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Simplest Improvement

Improvements

PHYSICAL REVIEW D 86, 123007 (2012)



● Geometric separation of tracks determines 
shape of vector potential, NOT time 
compression
○ Track 𝜇, σ of X, Y, Z, T within cell
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● Geometric separation of tracks determines 
shape of vector potential, NOT time 
compression
○ Track 𝜇, σ of X, Y, Z, T within cell

● Perturbate arrival time

● Consider maximum and minimum observer 
times
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● Assume the following shape 
parameterization:

● Seems to model the vector potential 
shape well, capturing particularly well the 
rising edge

● Breaks down when the number of tracks 
decreases
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● The practical and accurate methodology 
calculates averaged vector potentials in 4-D cells 
by summing currents
○ Reproduces expected beam patterns
○ Peak E field within 10% for low frequencies
○ Expected performance gain factor >20

● High frequency behavior is largely not right
○ Can be fixed by decreasing cell size and 

increasing computational demand

● Profile shaping seems to be promising, but needs 
to be applied properly across the shower
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