Applying template synthesis to the radio emission from air showers with different geometries

Mitja Desmet, Stijn Buitink, Tim Huege ARENA conference (11–14 Jun 2024)

1

MICROSCOPIC SIMULATIONS ARE ACCURATE, BUT COMPUTATIONALLY INEFFICIENT

Traditionally we use Monte-Carlo based simulations in order to interpret our data.

 This becomes intractable for the next generation of cosmic ray experiments such as SKA.

To tackle this, we developed a hybrid approach: **template synthesis**

Square Kilometer Array

ATMOPSHERIC SLICES IN TEMPLATE SYNTHESIS ARE POINT SOURCES OF RADIO EMISSION

In the template synthesis approach, we divide the atmosphere into **slices** of constant atmospheric depth.

 Each slice is labelled by the atmospheric depth at the bottom of the slice.

The emission coming from each slice is **treated separately**.

 The amplitude is rescaled with the number of (emitting) particles in the slice.

TEMPLATE SYNTHESIS PARAMETRISES THE EMISSION TO REDUCE COMPUTATION TIME

Geomagnetic component

Charge-excess/Askaryan component

WE HAVE SHOWN THIS WORKS FOR A FIXED ZENITH ANGLE

PoS ARENA2022 052

Template synthesis approach for radio emission from extensive air showers

Mitja Desmet,
 ".* Stijn Buitink," David Butler,
 b Tim Huege,
 a,b Ralph Engel b and Olaf Scholten
 a,c

Astropart. Phys. 175 (2024), 102923 1

Astroparticle Physics Volume 157, May 2024, 102923

Proof of principle for template synthesis approach for the radio emission from

vertical extensive air showers

<u>Mitja Desmet ° A</u> Stijn Buitink.°, <u>Tim Huege</u> ° ^b, <u>David Butler</u> ^b, <u>Ralph Engel</u> ^b, <u>Olaf Scholten</u> ^{° c}

Generalising template synthesis of EAS radio emission to other geometries

Mitja Desmet, a.* Stijn Buitinka and Tim Huegea.b

PoS ICRC2023 216

WE HAVE SHOWN THIS WORKS FOR A FIXED ZENITH ANGLE

We input an origin shower and use the parametrisations to synthesise a **target** longitudinal profile.

The synthesised pulse matches the one from **CoREAS** within 6% in amplitude.

IN ORDER TO MAKE TEMPLATE SYNTHESIS VIABLE, WE NEED TO GENERALISE IT ACROSS GEOMETRIES

The current formulation of **template synthesis** does not allow for translating across air shower geometries (i.e. zenith and azimuth angle).

IN ORDER TO MAKE TEMPLATE SYNTHESIS VIABLE, WE NEED TO GENERALISE IT ACROSS GEOMETRIES

The current formulation of **template synthesis** does not allow for translating across air shower geometries (i.e. zenith and azimuth angle).

Combining slice and antenna in one quantity

Viewing angle

THE VIEWING ANGLE AS FRACTION OF CHERENKOV ANGLE IS A COMPARABLE QUANTITY

- Shower axis
- \triangleright N(X) : longitudinal profile
- ΔX_{max} : distance from X_{max} to slice, in g/cm²
- θ_V : viewing angle, as a fraction of θ_C
- Shower plane
- Antenna projection

THE ΔX_{MAX} DETERMINES THE EQUIVALENT SLICE IN A DIFFERENT GEOMETRY

 $\Delta X_{
m max} =$ 200 g/cm², $\theta_V =$ 0.8 θ_C

► **d**_{slice} : distance slice - antenna

- d_{slice}: distance slice antenna
- α_{GEO} : geomagnetic angle

- ► **d**_{slice} : distance slice antenna
- α_{GEO} : geomagnetic angle
- ► **N**_{slice} : # of emitters in slice
- \blacktriangleright $\rho_{\rm slice}$: density in slice
- $\theta^{c}_{\text{slice}}$: Cherenkov angle at slice

- ► **d**_{slice} : distance slice antenna
- ► α_{GEO} : geomagnetic angle
- ► *N*_{slice} : # of emitters in slice
- \blacktriangleright $\rho_{\rm slice}$: density in slice
- $\theta_{\text{slice}}^{C}$: Cherenkov angle at slice
- ▶ θ, ϕ : zenith/azimuth of shower

WE RELATE THE SPECTRUM TO THE PROPERTIES OF THE SLICE

The **geomagnetic** amplitude frequency spectrum an antenna observes coming from a given atmospheric slice, scales with

- the **geomagnetic angle** (for the geomagnetic component), $\propto \sin(\alpha_{\text{GEO}})$
- the **air density**¹, $\propto 1/\rho_{\text{slice}}$

For the charge-excess emission we have a scaling with

► The **Cherenkov angle**¹ (related to the refractive index), $\propto \sin(\theta_{\text{slice}}^{C})$

Both components also scale with

- the **distance** to the slice, $\propto 1/d_{\rm slice}$
- \blacktriangleright the number of **particles** in the slice, as \propto **N**_{slice}

¹Juan Ammerman-Yebra et al JCAP08(2023)015

APPLYING THESE SCALING RELATIONS, ALIGNS THE SPECTRA FROM THE EQUIVALENT SLICES

Before:

 $\Delta X_{\rm max} = 200 \ {\rm g/cm^2}, \ \theta_V = 0.8 \ \theta_C$

APPLYING THESE SCALING RELATIONS, ALIGNS THE SPECTRA FROM THE EQUIVALENT SLICES

After:

 $\Delta X_{
m max} =$ 200 g/cm², $\theta_V =$ 0.8 θ_C

NOW WE CAN APPLY THE STANDARD TEMPLATE SYNTHESIS MACHINERY

WE FIND SPECTRAL FUNCTIONS PER VIEWING ANGLE

If we correlate the values of the parameters from the parametrised function to the ΔX_{max} of the slice they were extracted from, they all fall onto a parabola.

TO SYNTHESISE THE EMISSION IN AN ANTENNA, WE USE INTERPOLATION IN EVERY SLICE

We can now **synthesise** the emission **per slice** for the viewing angles we have the spectral functions for.

For every slice, a viewing angle will result in a different distance in the shower plane.

- Viewing angles are function of Cherenkov angle, which varies per slice.
- Distance to the showerplane also changes.

Solution: interpolate^a to the required viewing angle per slice

^aA. Corstanje et al 2023 JINST 18 P09005

GEOMAGNETIC SIGNAL SYNTHESISES WELL, CHARGE-EXCESS COMPONENT NEEDS ADJUSTMENTS

Signals for an antenna at 240.0m from the shower axis $X_{max}^{origin}=$ 667.0 $\rm g/cm^2$ - $X_{max}^{target}=$ 611.8 $\rm g/cm^2$

17

GEOMAGNETIC SIGNAL SYNTHESISES WELL, CHARGE-EXCESS COMPONENT NEEDS ADJUSTMENTS

OPEN QUESTION: SHOWERPLANE PROJECTION

How should one project to the showerplane?

- Along the shower axis?
- Or rather along line of sight?

We found a set of **scaling relations** which relate the amplitude frequency spectra from slices of showers with a different zenith angle.

• Key components are the viewing angle, θ_V , and the distance of the slice to the shower maximum, ΔX_{max} .

Combining these with a geometry based on viewing angle, we can

- a) remove the dependency on the slice,
- b) reduce the number of parameters to store and
- c) generalise the spectral functions for all geometries.

 \Rightarrow We are ready to apply template synthesis to cosmic ray air showers from any arrival direction, which will allow us to simulate the radio emission at macroscopic simulation speeds, complementary to Radio Morphing.

Thank you!

Signals for an antenna at 240.0m from the shower axis coming from slice at 600 $\rm g/cm^2$ - X_{max}^{origin} = 667.0 $\rm g/cm^2$ - X_{max}^{target} = 611.8 $\rm g/cm^2$

Signals for an antenna at 240.0m from the shower axis coming from slice at 800 g/cm² - X_{max}^{origin} = 667.0 $\rm g/cm^2$ - X_{max}^{target} = 611.8 $\rm g/cm^2$

Signals for an antenna at 240.0m from the shower axis coming from slice at 1000 g/cm² - $X_{max}^{\rm origin}$ = 667.0 $\rm g/cm^2$ - $X_{max}^{\rm target}$ = 611.8 $\rm g/cm^2$

Signals for an antenna at 240.0m from the shower axis coming from slice at 1200 g/cm² - $X_{max}^{\rm origin}$ = 667.0 $\rm g/cm^2$ - $X_{max}^{\rm target}$ = 611.8 $\rm g/cm^2$

SPECTRAL FITS FOR OTHER PARAMETERS

Viewing angle is $1.5\theta_C$

SPECTRAL FITS FOR OTHER PARAMETERS

Viewing angle is $1.5\theta_C$

SPECTRAL FITS FOR OTHER VIEWING ANGLE

SPECTRAL FITS FOR OTHER VIEWING ANGLE

Viewing angle is $0.91\theta_C$

SPECTRAL FITS FOR OTHER VIEWING ANGLE

Viewing angle is $0.91\theta_C$

HIGHLIGHTS FROM THE PAPER

Slice at 800 g/cm2

HIGHLIGHTS FROM THE PAPER

THE FINAL EQUATIONS FOR THE PARAMETRISED SPECTRA

$$\begin{split} \tilde{A}_{\text{geo}}(f, \Delta X_{\text{max}}) &= \left(a_{\text{geo}} \cdot \frac{N_{\text{slice}} \cdot \sin(\alpha_{\text{GEO}})}{d_{\text{slice}} \cdot \rho_{\text{slice}}} \right) \cdot \exp\left(b_{\text{geo}} \cdot (f - f_0) + c_{\text{geo}} \cdot (f - f_0)^2 \right) \\ \tilde{A}_{\text{ce}}(f, \Delta X_{\text{max}}) &= \left(a_{\text{ce}} \cdot \frac{N_{\text{slice}} \cdot \sin(\theta_{\text{Cherenkov}})}{d_{\text{slice}}} \right) \cdot \exp\left(b_{\text{ce}} \cdot (f - f_0) \right) \end{split}$$