Characteristics of Atmosphere-Skimming air showers relevant for high-altitude radio experiments

Sergio Cabana Freire<sup>a</sup>, Jaime Álvarez Muñiz<sup>a</sup> and Matías Tueros<sup>b</sup>

<sup>a</sup>Instituto Galego de Física de Altas Enerxías, Universidade de Santiago de Compostela <sup>b</sup>Instituto de Física La Plata. CONICET - UNLP

June 12, 2024







1/16

ARENA 2024



2 Air shower development

3 Characteristics of the radio emission





2 Air shower development

3 Characteristics of the radio emission



# Introduction & Motivation

• Air showers developing in the atmosphere without intercepting ground



• Propagation across very low densities under the effect of the geomagnetic field

# Introduction & Motivation

• Air showers developing in the atmosphere without intercepting ground



- Propagation across very low densities under the effect of the geomagnetic field
- 7 atmosphere-skimming events detected in ANITA flights. Recent observations by EUSO-SPB2

# Introduction & Motivation

• Air showers developing in the atmosphere without intercepting ground



- Propagation across very low densities under the effect of the geomagnetic field
- 7 atmosphere-skimming events detected in ANITA flights. Recent observations by EUSO-SPB2
- RASPASS: Version of ZHAireS allowing simulations of any geometry.





3 Characteristics of the radio emission



#### Parameter space for shower development



• Balloon-borne detector:  $h = 36 \, \mathrm{km}$ 



 Available matter for shower development and impact parameter restrict *detectable* geometries

ARENA 2024

### Longitudinal development

•  $\langle X_{\rm max} \rangle$  and  $\sigma$   $(X_{\rm max})$  similar to downward-going showers in units of  $\rm g/cm^2$ 



# Longitudinal development

- $\langle X_{\rm max} \rangle$  and  $\sigma$   $(X_{\rm max})$  similar to downward-going showers in units of  $\rm g/cm^2$
- $\bullet$  Showers stretching distances of hundreds of  $\rm km,$  increasing for cascades developing higher in the atmosphere
- $\bullet\,$  Fluctuations in  $X_{\rm max}$  reach the order of tens  $\rm km$



7/16

### Lateral development at $X_{\max}$

- Showers develop across huge distances under the geomagnetic field
- Flattening of the shower front in the  $\mathbf{v} \times \mathbf{B}$  direction
- Effect enhanced as cascades propagate in lower densities (smaller  $\theta$ )



8/16



2 Air shower development

#### 3 Characteristics of the radio emission



- Geometry and dimensions of cascades affect their radio emission
- Radio LDF displaced downwards: *Refractive asymmetry*
- Enhanced for inclined showers. Independent of frequency





- Geometry and dimensions of cascades affect their radio emission
- Radio LDF displaced downwards: *Refractive asymmetry*
- Enhanced for inclined showers. Independent of frequency





- Asymmetries in the radio emission impact the effective area of high-altitude detectors
- Example: Showers producing signals above trigger threshold of ANITA, assuming elevation angle of event 9734523 of ANITA IV  $(\theta = 95.64^{\circ})$



- Asymmetries in the radio emission impact the effective area of high-altitude detectors
- Example: Showers producing signals above trigger threshold of ANITA, assuming elevation angle of event 9734523 of ANITA IV  $(\theta = 95.64^{\circ})$



- Asymmetries in the radio emission impact the effective area of high-altitude detectors
- Example: Showers producing signals above trigger threshold of ANITA, assuming elevation angle of event 9734523 of ANITA IV  $(\theta = 95.64^{\circ})$



- Asymmetries in the radio emission impact the effective area of high-altitude detectors
- Asymmetric effective area around the detector due to refractive effects



- Asymmetries in the radio emission impact the effective area of high-altitude detectors
- Asymmetric effective area around the detector due to refractive effects



- Asymmetries in the radio emission impact the effective area of high-altitude detectors
- Asymmetric effective area around the detector due to refractive effects



- Geometry and dimensions of cascades affect their radio emission
- Stronger electric fields outside the v × B plane: Coherence asymmetry
- Dependence on shower geometry, orientation w.r.t magnetic field and frequency of observation.





- Geometry and dimensions of cascades affect their radio emission
- Stronger electric fields outside the v × B plane: Coherence asymmetry
- Dependence on shower geometry, orientation w.r.t magnetic field and frequency of observation.





- Geometry and dimensions of cascades affect their radio emission
- Stronger electric fields outside the v × B plane: Coherence asymmetry
- Dependence on shower geometry, orientation w.r.t magnetic field and frequency of observation.





- Geometry and dimensions of cascades affect their radio emission
- Stronger electric fields outside the v × B plane: Coherence asymmetry
- Dependence on shower geometry, orientation w.r.t magnetic field and frequency of observation.





- Asymmetries in the radio emission impact the effective area of high-altitude detectors
- Coherence asymmetry: Showers leaving the detector outside their flattening plane ( $\mathbf{v} \times \mathbf{B}$ ) produce stronger signals (ID 9734523,  $\theta = 95.64^{\circ}$ )



- Asymmetries in the radio emission impact the effective area of high-altitude detectors
- Coherence asymmetry: Showers leaving the detector outside their flattening plane ( $\mathbf{v} \times \mathbf{B}$ ) produce stronger signals (ID 9734523,  $\theta = 95.64^{\circ}$ )



#### Future detectors

- Lower trigger thresholds will increase the number of observed events
- Instruments working in lower frequency bands will be less affected by coherence asymmetry





2) Air shower development

3 Characteristics of the radio emission



- Atmosphere-skimming air showers develop across very low densities under the effect of the geomagnetic field.
- $\bullet$  Length scales reaching hundreds of  $\rm km,$  strongly flattened along the  $\nu \times B$  direction
- Two distinct features in the radio emission: refractive and coherence asymmetries
- Complex dependence between shower geometry and detector position

- Atmosphere-skimming air showers develop across very low densities under the effect of the geomagnetic field.
- Length scales reaching hundreds of  $\rm km,$  strongly flattened along the  $\mathbf{v}\times\mathbf{B}$  direction
- Two distinct features in the radio emission: refractive and coherence asymmetries
- Complex dependence between shower geometry and detector position
- Detailed simulations will be needed to study how these effects influence the interpretation of collected data
- ZHAireS-RASPASS available upon request

#### Backup: Phase space



16 / 16

# Backup: Longitudinal development



16/16

#### Backup: Elongation Rate



## Backup: Longitudinal development & magnetic field effects



#### Backup: Longitudinal development & magnetic field effects



#### Backup: Invisible energy for radio

• Showers passing at  $h = 36 \, \mathrm{km}$ 



#### Backup: Invisible energy for radio

• Showers passing at  $h = 4 \, \mathrm{km}$ 



#### Backup: Muon lateral development

• Proton shower with  $\theta = 94^{\circ}$ ,  $h = 36 \, \mathrm{km}$ 



#### Backup: Electron lateral development

• Proton shower with  $\theta = 94^{\circ}$ ,  $h = 36 \,\mathrm{km}$  at  $X_{\mathrm{max}}$ 



#### Backup: Electron lateral development

• Proton shower with  $heta=94^\circ$ ,  $h=36\,\mathrm{km}$  at  $X_{\mathrm{max}}$ 



#### Backup: Distribution of particles at the detector

• Proton showers with  $h = 36 \, \mathrm{km}$  intercepted at different ages



# Backup: Hadronic contribution & Constant $\vec{B}$ approx.



### Backup: Aperture of balloon-borne experiments

- Asymmetries in the radio emission impact the effective area of high-altitude detectors
- Coherence asymmetry: Showers leaving the detector outside their flattening plane ( $\mathbf{v} \times \mathbf{B}$ ) produce stronger signals (ID 51293223,  $\theta = 95.38^{\circ}$ )



#### Simulated spectra

- Reduction of high frequency content at positions inside the *flattening* plane of the shower
- Different spectral slope at equivalent off-axis positions.
- Most important differences appear close to the Cherenkov angle
- Possible effects on analysis methods based on spectral shape.



### Backup: Impact of asymmetries on spectral slopes

• Exponential fits to the spectrum in the 100 - 250 MHz band for a proton shower with  $\theta = 94^{\circ}$  and h = 36 km



### Backup: Effective area of ANITA IV

- Assuming elevation angles for the two events detected by ANITA IV
- Multiplied by the cosmic ray flux as measured by Auger

