

Keith McBride for the PUEO collaboration

06/12/2024

The Payload for Ultrahigh Energy Observations

Science Goal

What is the nature and cosmic distribution of the astrophysical accelerators that produce the highest energy particles in the universe?

Objective

Characterize the cosmologically distant source populations including transient/flaring sources

<u>Measure</u>

Neutrino fluxes, energy, direction (sky map) and flavor* *see Christoph's talk

Cosmin Deaconu ICRC 2023

Askaryan signal

Askaryan pulse in ice and propagation to payload

Design PUEO to:

- A. Reconstruct the Electric field vs time
- E.g. ANITA geomagnetic signals
- B. Neutrino direction
- Precision pointing -> sky map
- C. Large effective area

Backgrounds to mitigate

1. Thermal noise* – ice (can't get rid of it, in fact we need it)

- 2. Anthropogenic- on continent (bases) or space (satellites)
- Digital notch filters
- Increase the low frequency (LF) cutoff on main instrument compared to ANITA
- 3. Payload noise
- EMI mitigation strategies e.g. Faraday housing electronics, EMI gasketing, etc

The overall design of PUEO

Main Instrument – large number of antennas (192 channels)

- Collecting area
- Quad-ridged horn, dual polarized

Low frequency deployable instrument

Large azimuthal coverage – 24 phi sectors ° 2π acceptance

Phased-array trigger

Navigation system

Power system – omni PV

RF enclosure for all electronics

Main Instrument antennas

Dual polarization

Custom-designed by Toyon:

- Beampattern
- Gain across band
 - Bandwidth 300-1200 MHz
 - Compared to ANITA: 200-1200 MHz

-> Ongoing characterization of each antenna here at UC

Credit Martin & Mackey

KEITH MCBRIDE-UNIVERSITY OF CHICAGO

6/12/2024

Main Instrument – RF chain and MIE

Expected uV scale Askaryan signal at the antenna outputs

- For DAQ, amplification and filter
- Gain (voltage) ~70dB
- TV testing of RF chain components

Enclosure for mitigation of RF pickup (-80dB)

Main Instrument Enclosure

->Ongoing qualification

here at UC

Credit R. Scrandis

Low Frequency Instrument

8 dual polarized sinuous antennas deployed after launch

50-300MHz band with separate amplification chain

LF DAQ hardware is similar to Main Instrument • Firmware filtering TBD

Cosmic ray shower aperature increase with LF

More in the next talk by Yuchieh

LF Antennas

DAQ and beamforming

Central component – RFSoC (x8 ADC 3 Gsps)
Iow power trigger and digitizer system

SURF PCBs – x8 channels with 12 bit ADC samples

Beamforming done with 5 bit conversion post-filter

- E.g. Dual biquad+FIR filters then Automatic Offset and Gain Control ("12-to-5") algorithm
- Boost for Askaryan signal

Firmware trigger optimization – ongoing study

-> Level 1 delay-and-sum beamforming of 8 channels (2 phi sectors of 1 Pol)

- -> Level 2 Repeat with 4 phi sectors
- -> Level 3 Above threshold post-removal of CW digitally

Sampling Unit for Radio Frequencies

6/12/2024

Navigation suite

To achieve design goals of 50 meters precision in Lat, Long, altitude and 0.05° in heading, pitch, and roll there are many nav systems being integrated

Inertial Navigation Systems (INS)

2 unique units: both independently spec'ed for
0.01 deg in pitch, roll, and heading

Differential GNSS unit

Star trackers and an omnidirectional sun sensor array

Magnetometer

Credit Quin Abarr

HiCal-3 and ground calibration

PUEO's ability to measure the energy and pointing of neutrinos is boosted by calibration pulses

HiCal-3 (x2) will be flown on separate balloons to accompany PUEO

- $\circ\,$ Based around the successful HiCal-2 with ANITA-IV
- V/H Pol pulses for calibration during flight
- Reflected and direct measurements

Ground system calibration

• Sites at McMurdo and WAIS Divide Siple Dome

Credit Steven Prohira

Flight computer, power, hsk

0.5MB events at 100Hz expected event rate

- Events are 12 bit ADC in window*(192 MI + 16 LF channels)
- 10GBe provides event data to SFC
- Triply redundant 128TB storage
- Prioritizer with GPU -> downlink data in flight

Power and Housekeeping

- PV array expected to provide 1800W
- Control system for RF bank
- Temperature monitoring

Ballooning

PUEO compared to ANITA

PUEO

4600lbs science

With everything 7000lbs

34.43H MCF (8000lbs max)

PUEO simulation studies

Simulations show design goals being met

- beamforming trigger
- real antenna responses incorporated

Higher effective SNR by combining channels at the L1 trigger

 Digitization + trigger on RFSoC enables improvement over ANITA SNR

Single event Askaryan channel shown

Ongoing simulation studies

• Including MI and LF full chain responses

Conclusion

LDB mission designed with 60 day capacity, expecting launch in Dec 2025

Significant heritage from ANITA missions

Major improvement in sensitivity comes from:

- Smaller antennas and more of them
- Beamforming trigger and digitizer system with RFSoC technology
- Lessons learned on the many successful ANITA flights

PUEO will teach us about the highest energy accelerators in the universe!

Will Luszczak ICRC 2023

Thank you!

А

KEITH MCBRIDE-UNIVERSITY OF CHICAGO

6/12/2024