The Probe of Extreme Multimessenger Astrophysics (POEMMA) on a Balloon with Radio

George Filippatos for the JEM-EUSO Collaboration

10th International Workshop on Acoustic and Radio EeV Neutrino Detection Activities - Chicago June 12th 2024

G. Filippatos (gfil@uchicago.edu)

POEMMA Balloon w/ Radio

ARENA 2024

12 June 2024 0 / 16

Collaboration

	Institution	Science Team members
US	Columbia	A. Olinto (PI)
	UChicago	S.Meyer, J.Eser (PM), G. Filippatos
		E. Mayotte, L. Wiencke, F. Sarazin, S. Mayotte , T. Heibges, J. Burton, J. Caraca-Valente
		M. Reno, Y. Onel, D. Garg, L. Kupari
		P. Reardon, J. Adam, P. Alldredge
		T. Venters, J. Krizmanic
		S. Wissel, A. Cummings
		A. Meli
		T. Paul
		F.Schroeder, Alexander Novikov
cz	Olomouc	C Kerny, M. Pech
FR	APC	E. Parizot, M. Battisti, A. Creusot, D. Trofimov
GER	КІТ	A.Haungs, M. Venugopal
IT	Naples	G. Osteria (Co-PI), V. Scotti, B. Panico, F. Perfetto, M. Mese
	Turin	M. Bertaina, H. Miamoto,
	Bari	F. Cafagna
	LNF	M.Ricci
	Catania	R. Caruso
	Roma 2	M. Casolino, L. Marcelli, Z. Plebaniak
JA	RIKEN	M. Casolino, Y. Takizawa
POL	Warsaw?	J. Szabelski
	Warsaw	L. Piotrowski
SK	SAS	S. Mackovjak

51 members, 22 institutions, 8 countries

G. Filippatos (gfil@uchicago.edu)

POEMMA Balloon w/ Radio

POEMMA-Balloon with Radio (PBR)

Ultra-High-Energy Cosmic Rays (UHECRs) UV Fluorescence

EAS

Atmosphere

UHECR

G. Filippatos (gfil@uchicago.edu)

POEMMA Balloon w/ Radio

High Altitude Horizonthal Airshowers (HAHAs) Optical+Radio

Cosmic Rays E > PeV

Cherenkov Emission

ARENA 2024

Tau Neutrino Optical+Radio

Tau lepton decay

Tau Neutrino

EAS

The Probe Of Extreme Multimessenger Astrophysics (POEMMA)

- Conceptual design for a NASA Astrophysics Probe-class mission¹
- 2 sattiliettes flying in formation in low Earth orbit
- ► Large (45° × 45°) FoV, hybrid focal surface for fluorescnce and Cherenkov observations
- 2 observation modes, stereo optimized to detect UHECRs and limb optimized to detect astrophysical ν_τ

¹A.V. Olinto et al. 2021

G. Filippatos (gfil@uchicago.edu)

POEMMA Balloon w/ Radio

Building on the experience of EUSO-SPB2 (2023)

- Payload housing 2 optical telescopes to prototype the two portions of POEMMA's focal surface
- Flight terminated after 1.5 days due to a leak in the balloon
- Instruments worked as expected, but not enough time to accomplish main science goals

Super Pressure Balloons

- Mantain constant pressure throughout day/night cycles
- Allow for mid-lattitude flights with dark periods of observations and sunlihgt for battery charging
- Utilize semi-annual stratospheric wind pattern to circumnavigate
- ► 5 launches from Wānaka NZ
 - 32 Days (2015)¹, 46 Days (2016)¹, 12 Days (2017)², 39 Days (2023)¹, 1.5 Days (2023)²

¹Recovered on land ²JEM-EUSO collaboration payload

G. Filippatos (gfil@uchicago.edu)

ARENA 2024

Payload Overview

- 3,000 lbs of science (5,500 lbs total payload weight), 33.5 km float altitude
- 1.1 m entrance diameter Schmidt telsescope
 - Ability to point from -90°(nadir) to +12° in zenith
 - Azimuthal rotational control
- Hybrid focal surface
 - MAPMTs for fluoresnce observation
 - SiPMs for Cherenkov observation

POEMMA Balloon w/ Radio

Radio Instrument

- Two 2×2 m sinuous antenna canted at 120°
- ► 50-500 MHz frequencey range
- Capable of self triggering, or recieving triggers from optical instrument
- Rotates with main telescope
- Modeled off of the the PUEO low frequencey instrument design

Observing Mode 1: Ultra-High Energy Cosmic Rays (UHECRs) Observations

Simulated apperture for EUSO-SPB2

Telescope pointing down towards the Earth

- ► 144 MAPMTs, with 9,216 total channels with a 25° × 25° FoV
- 1 μs integration, BG-3 filter (280-420 nm)
- $\blacktriangleright\,$ Sensitive to EAS with E $\gtrsim 10^{18}~eV$
- Requires cloudless, moonless conditions for observations
- $\blacktriangleright \approx 1$ UHECR expected per 8 hours of observation

Observing Mode 2: High Energy Cosmic Ray Observations

- Telescope pointing near horizontal, above the limb of the Earth
- Sillicon Photomutipliers, 100 MHz digitization over optical wavelengths. 12° × 6° FoV
- \blacktriangleright Sensitive to EAS with E $\gtrsim 10^{15}~eV$
- $\blacktriangleright \approx 1$ cosmic ray expected per minute of observation
- Sensitive to energies around the knee in the cosmic ray energy spectrum

Simulated angular distributions for PBR at different EAS energies

G. Filippatos (gfil@uchicago.edu)

POEMMA Balloon w/ Radio

ARENA 2024

12 June 2024 9 / 16

Observing Mode 3: Earth-Skimming ν_{τ} Observations

- Telescope pointing near horizontal, below the limb of the Earth
- Sensitive to showers induced by τ created by a ν_τ interacting in the Earth's crust
- ► Expected ≈ 0 events per flight from diffuse cosmogenic background
- Fluoresnce camera has some sensitivity to UHECRs in this observing configuration

Astrophysical transient Targets of Opportunity

- Integrated exposure is not competeitve with ground based experiments that can run for years
- Instantaneous exposure is larger than most ground based detectors due to the nature of the observation
- Ability to point detector enables follow up of astrophyiscal transient events, including BNS mergers, GRBs, etc.

Simultaneuos Radio and Optical Measurements

- Optical measurement is degenerate in distance from shower axis and shower energy
- POEMMA breaks this degeneracy with two eyes observing the shower
- Radio spectrum contains information about distance from the shower axis
- Combining with optical measurements leads to a better constraint on the shower energy shower direction (azimuth) and potentially shower maximum

Radio Denoising

Machine learning based techniques developed for identifying faint signals. Example above for IceTop Enhancement Prototype. More details in F. Schroeder's talk on Thursday.

Radio Noise from the rest of Payload

- Much of payload designed without radio noise in mind
- Mitigation planned including absorbing fabric around main telescope
- Motors needed for rotation planned to operate with radio instrument turned off
- Pre-flight measurements planned using anechoic chambers

Current Status

- Awaiting results of funding proposal
- Design well underway
- Proccurment of components and prototyping has begun
- ► 2027 flight application submitted

Proposed schedule to begin September 2024

Summary

- POEMMA Balloon with Radio is a proposed ultra-long duration stratospheric balloon mission with a targeted launch of 2027
- \blacktriangleright PBR will aim to measure cosmic rays via fluorescnce and optical Cherenkov and search of astrophyiscal ν_{τ}
- Hybrid focal surface (MAPMTs and SiPMs) will prototype instrumentation for POEMMA
- Novel technique of simultaneuos measurements of the radio and optical Cherenkov compnent of EAS will help constrain shower characteristics

Thank you for your attention

G. Filippatos (gfil@uchicago.edu)

POEMMA Balloon w/ Radio

ARENA 2024

12 June 2024 1