Cosmic ray observations with the Square Kilometre Array

Stijn Buitink

J. Bray, A. Corstanje, M. Desmet, H. Falcke, K. Gayley, B.M. Hare, J.R. Hörandel, T. Huege, C.W. James, V.B. Jhansi, N. Karastathis, G.K. Krampah, P. Mitra, K. Mulrey, B. Neijzen, A. Nelles, H. Pandya, O. Scholten, F. Schröder, R. Spencer, K. Terveer, S. Thoudam, G. Trinh, S. ter Veen, and M. Waterson

UNIVERSITEIT

12 June 2024, ARENA Chicago

Cosmic Ray observations with the SKA

- SKA will have mid-freq array in South-Africa and low-freq in Australia. Construction has started.
- SKA-low will consist of 57,344 log-periodic antennas within an area of ~1 km²
- Frequency bandwidth 50-350 MHz
- Extremely high-density & homogeneous coverage: very precise radio observations of air showers
- Energy range: 10¹⁶ eV 10¹⁸ eV. Further extension down to knee energy possible with interferometric techniques. Schoorlemmer & Carvalho arXiv:2006.10348 (2021), Schlüter & Huege, JINST arXiv:2102.13577 (2021)

Prototype @MRO (256 antennas)

Cosmic Ray observations with the SKA

57,344 SKALAs total

Simulations: X_{max} with SKA

SKA (simulated) LOFAR $X_{\rm max}$ resolution : 6 - 8 g/cm² 20 g/cm^2 Energy resolution 9 % :3% Core resolution : **50 cm** 3 – 10 m

A. Corstanje et al., PoS(ARENA2022)024

Reconstruction using LOFAR method (no SKA • optimization)

- Using Gaussian noise based on: ullet**Galactic background** (dominant < 200 MHz)**system noise** (dominant > 200 MHz)
- X_{max} reco for dedicated sets of SKA simulations.
- Resolution limited by number of simulated ulletshowers in sample.

Final resolution will depend on uncertainties in:

- Antenna model
- Atmosphere
- Galactic background (via calibration)
- MC simulations

Double-bump showers

- Double-bump showers are rare, more frequent at **lower energies** lacksquare
- Study hadronic cross section by measuring ΔX and N_1/N_2
- Most frequent for Helium: additional constraints on mass composition

• A high-energy hadron (or other fragment) from first interaction can interact late causing a second bump

Helium 5.6 x 10¹⁷ eV

filter out low frequencies to separate rings visually

Radio from double-bumps

Full simulation including: Antenna response Galactic + instrumental noise

Helium double-bump 5.6 x 10¹⁷ eV

Helium 7.4 x 10¹⁶ eV

-200 -150 -100 -50

50

0 Distance along vxB [m]

100

SNR increase 2

Radio from double-bumps

Helium double-bump 3.7 x 10¹⁶ eV

Radio from double-bumps

Small ΔX values $\rightarrow X_{max}$, L, R

- Longitudinal evolution can be parametrized as: N

If ΔX is too small two peaks are not resolved. However, shower can become elongated or strangely shaped

$$(X) = \exp\left(-\frac{X - X_{\max}}{RL}\right) \left(1 + \frac{R}{L}\left(X - X_{\max}\right)\right)^{\frac{1}{R^2}}$$

Can SKA reconstruct R or L?

L in LOFAR data ?

- LOFAR data: for given Xmax, fit quality depends on L
- Not clear yet if simultaneous L-X_{max} fit possible with LOFAR
- Important factors: core fit precision homogeneous coverage

SKA: Reconstructing shape parameters

A. Corstanje et al., PoS(ARENA2022)024

- 100 showers of same X_{max}
- Interpolated footprint
- Free core fit
- Noise and antenna response included
- MC truth: $S(L,R) = 204.6 \text{ g/cm}^2$ reco: $S(L,R) = 203.8 \text{ g/cm}^2$

SKA can reconstruct a linear combination of L and R:

$$S(L,R) = L + \frac{16 \,\text{g/cm}^2}{0.06} \,(R - 0.3),$$

A simulation challenge

A. Corstanje et al., PoS(ARENA2022)024

- In a real analysis Xmax and L/R have to be fitted simultaneously
- This currently requires too many computational resources to analyse all showers
- New approaches are in development to produce fast & accurate simulations
- Template synthesis now achieves 2% accuracy for fast simulation of vertical showers

Mitja Desmet, SB, T. Huege, D. Butler, R. Engel, Astropart.Phys. 157 (2024) 102923

Science with shape parameters

CONEX simulations: *L* distribution

High-L tail largest for Helium

L (g/cm²)

Average L and X_{max} for pure compositions Mixed compositions lie within a triangle

L distribution provides new information about mass composition & hadronic interactions

Each dot = sample of 1000 showers with unique combination of (p, He, C, Si, Fe) **color** = **proton** fraction

Proton separation

Towards lower energies

filtered 150-350 MHz SNR = 0.27

SNR = 4.37

Are PeV gamma rays are detectable? Use combination of:

- beamforming (& matched filtering) to improve SNR

- offline photon/hadron separation from reconstruction?

256 dual-polarised antennas per field

hybrid particle/radio trigger to remove RFI pulses & sub-PeV showers small search window around candidate source(s) to reduce CR background

The SKA Particle detector array

FWO (Belgium) contributes 740 kEuro funding for particle detector array

Potential layout of particle detector array at SKA-low

- Antenna field
- Particle detectors dense array (~100 units)
- Particle detectors ring (~50 units, optional)
- Particle detectors remote (~18 units, optional)

Scintillators from KIT (KASCADE-Grande coll.)

Prototype station @ Murchison Widefield Array

Low noise system: SiPMs & RFoF comm.

J. Bray et al., NIMPA 973, id. 164168 (2020)

This year: Deployment of 8-station array at MWA

Design: Univ. of Manchester (J. Bray, R. Spencer) Deployment: Curtin Univ. (C.W . James) DAQ: CSIRO

Conclusions

- SKA will produce highest-resolution radio air shower observations
- Unprecedented precision on X_{max} at 10¹⁶ 10¹⁸ eV
- New reconstruction possibilities: double-bump showers & stretched shower (R/L) hadronic physics & mass composition
- Beamforming lowers energy threshold:
 CR mass composition down to lower energies
 PeV gamma-rays detectable...
 but triggering & hadron separation very challenging.

Conclusions

- SKA will produce highest-resolution radio air shower observations
- Unprecedented precision on X_{max} at 10¹⁶ 10¹⁸ eV
- New reconstruction possibilities: double-bump showers & stretched shower (R/L) hadronic physics & mass composition
- Beamforming lowers energy threshold:
 CR mass composition down to lower energies
 PeV gamma-rays detectable...
 but triggering & hadron separation very challenging.

Particle detector array of ~100 units now funded!

DFG Deutsche Forschungsgemeinscha

