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The OVRO-LWA will probe the Galactic 
to extragalactic transition. 

Adapted from
 Becker-Tjus and M

erton 2017
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Introduction to the 
OVRO-LWA

• Extrasolar space weather, 
epoch of reionization, solar 
astronomy, cosmic rays and 
more 
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Array layout
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352 dual-polarization dipoles



The OVRO-LWA underwent a major upgrade from 2019-2023.

Junction 
box

ADC

Analog 
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electronics
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Feature

Expansion:
• 288 → 352 dual polarization 

antennas
• 1.5 km →2.4 km longest baselines

Refurbish all front-end electronics

New RF over optical fiber modules

New analog receiver boards for better 
signal path isolation

All new digital signal processing 
electronics: opportunity for 
commensal cosmic ray search
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Bringing all signals to a central 
location is crucial to the cosmic ray 
detection strategy.

• Requires a combination of:
• Coaxial cable
• RF over Fiber optics
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Cosmic ray threshold-
coincidence trigger firmware 
runs alongside firmware for 
other observing modes.
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My cosmic ray 
search strategy 
leverages the 
array layout.

• Array layout 
color-coded by 
FPGA

• Distant antennas 
veto RFI.
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CPU
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1 Gbit 
switch

40 Gbit 
switch

Data flow and detector dead time

Design challenges
• Readout firmware strategy
• Inter-FPGA communication
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Performance
• Readout time: 0.7ms
• Inter-FPGA communication time: 

0.84 microsecond
• Dead time for 20-40 Hz trigger 

rate: 1.3-2.7%
• Veto dead time 4%
• Total: 5-7% 

Trigger

Waveform 
data

Control 
settings



Event Classification Software: Reject RFI & identify cosmic rays

Summary statistics for 
each event

Apply selection criteria on model fits

~1% pass
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Basic quality criteria

Model fits
• Spherical wavefront fit to arrival times
• 2D Gaussian fit to spatial distribution of SNR

Cosmic ray candidates

~0.1% pass

Example dataset: 19 hours from 2 nights
 April 29-30 & May 1-2

……………………………………………………….877365 events

……………………………………………………….3368 events

………………………………………………………4 candidate cosmic rays
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Example cosmic ray candidate 21-Feb-2024
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Example cosmic ray candidate 21-Feb-2024
Waveform of highest-SNR antenna
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Example cosmic ray candidate 01-May-2024
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Example cosmic ray candidate 01-May-2024
Waveform of highest-SNR antenna
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Azimuth 52.0 +- 0.2 degrees 

Zenith angle 33.4 +- 0.1 degree 



Next steps

• Refine calibration
• X-max reconstruction
• Explore interferometric reconstruction
• Cross-comparison with muon detector
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Conclusions

• The standalone-radio cosmic ray 
detector for the OVRO-LWA is 
complete and cosmic ray searching 
has begun.

• Detector dead time 5-7%
• Detailed spatial sampling of cosmic 

ray footprints supports goals of 
precise air shower reconstruction, 
and testing interferometric 
techniques.

17



Extra slides
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01-May-2024
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2D Gaussian

Arrival direction



Summary of cosmic ray system design goals

Observable Instrument Functional Requirement

Band-limited radio impulse 5ns time resolution, 1ns timing 
synchronization

Polarized emission Search 2 polarizations 

Beamed emission Subsets of antennas can trigger full-
array readout

Expected flux: 5 events per day over 
OVRO-LWA core

Detector dead time <10%

Engineering constraint Instrument Functional Requirement

Total data rate of OVRO-LWA is ~terabit 
per second

Buffer data, and trigger readout

Array spans 2.4 km Buffer should be 20 microseconds to 
sample background before event
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log (E/eV)

Schroeder 20199    10    11    12    13    14    15    16    17    18    19    20  

Cosmic ray composition measurements are the key. 

Observable by
OVRO-LWA  

Individual sources may 
have rigidity-dependent 
cutoff energies.

Hence shifts in 
composition are clues to 
shifts in source classes.
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Only accessible via ground-based experiments
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