Standalone-radio cosmic ray detection at the OVRO-LWA

Kathryn Plant

Jet Propulsion Laboratory California Institute of Technology

The OVRO-LWA will probe the Galactic to extragalactic transition.

Introduction to the OVRO-LWA

 Extrasolar space weather, epoch of reionization, solar astronomy, cosmic rays and more

Array layout

The OVRO-LWA underwent a major upgrade from 2019-2023.

Bringing all signals to a central location is crucial to the cosmic ray detection strategy.

- Requires a combination of:
 - Coaxial cable
 - RF over Fiber optics

OVRO-LWA signal path

My cosmic ray search strategy leverages the array layout.

- Array layout color-coded by FPGA
- Distant antennas veto RFI.

Trigger

Event Classification Software: Reject RFI & identify cosmic rays

Example Event–Arrival time & signal to noise ratio

Example cosmic ray candidate 21-Feb-2024

SNR=(Peak of Hilbert envelope)/rms Mean SNR of background noise ~3.8

Example cosmic ray candidate 21-Feb-2024

Waveform of highest-SNR antenna

Example cosmic ray candidate 01-May-2024

Example cosmic ray candidate 01-May-2024

Waveform of highest-SNR antenna

Next steps

- Refine calibration
- X-max reconstruction
- Explore interferometric reconstruction
- Cross-comparison with muon detector

Conclusions

- The standalone-radio cosmic ray detector for the OVRO-LWA is complete and cosmic ray searching has begun.
- Detector dead time 5-7%
- Detailed spatial sampling of cosmic ray footprints supports goals of precise air shower reconstruction, and testing interferometric techniques.

Extra slides

-400

Summary of cosmic ray system design goals

Observable	Instrument Functional Requirement
Band-limited radio impulse	5ns time resolution, 1ns timing synchronization
Polarized emission	Search 2 polarizations
Beamed emission	Subsets of antennas can trigger full- array readout
Expected flux: 5 events per day over OVRO-LWA core	Detector dead time <10%

Engineering constraint	Instrument Functional Requirement
Total data rate of OVRO-LWA is ~terabit per second	Buffer data, and trigger readout
Array spans 2.4 km	Buffer should be 20 microseconds to sample background before event

Cosmic ray composition measurements are the key.

log (E/eV)