

PIERRE

OBSERVATORY

Measuring the muon content of inclined air showers using AERA and the water-Cherenkov detector of the Pierre Auger Observatory

Marvin Gottowik

for the *Pierre Auger Collaboration*, Karlsruhe Institute of Technology (KIT)

ARENA2024 13.06.2024

The Pierre Auger Observatory

AERA

153 autonomous radio stations, total area: 17 km²

Muon content with AERA-WCD hybrid events Marvin.gottowik@kit.edu | ARENA 2024 | Slide 2

Water Cherenkov Detector (WCD) 1660 stations with 1.5 km spacing total area: 3000 km²

Muon Detector (MD) Fluorescence Detector (FD)

Auger Engineering Radio Array (AERA)

- Energy range: 10¹⁷ 10¹⁹ eV
- Started data taking in 2011
- Largest radio detector for cosmic rays until 2023
- Precursor of the AugerPrime Radio Detector

Muon content in air showers

- Muon number N_{μ} contains complementary composition information to Xmax.
- N_{μ} underpredicted by all currentgeneration hadronic interaction models.
- At Auger: independent reconstructions of $N_{\rm u}$ and primary energy
 - WCD-FD hybrids (cf. Phys. Rev. Lett. 126 (2021))
 - MD-WCD hybrids (cf. Eur. Phys. J. C 80 (2020) 751)
 - Here: 1500 m WCD + AERA, proof of principle study

WCD inclined reconstruction

- Established reconstruction method for inclined showers with $62^{\circ} < \theta < 80^{\circ}$. Full efficiency of the 1500 m WCD array above 4 EeV primary energy. (cf. JCAP 08 (2014) 019)
- Rescale simulated muon density pattern on ground using 10¹⁹ eV proton shower to measurements:

 $\rho_{\mu}(\vec{r};\theta,\phi,E) = N_{19} \cdot \rho_{\mu,19}(\vec{r};\theta,\phi)$

- N19: relative muon number wrt ref map
- Refrain from calibrating N19 to absolute muon number for simplicity in this proof of principle study.

AERA inclined reconstruction

- Dedicated LDF model for inclined showers developed for the RD (cf. JCAP01(2023)008)
- Extraction of geomagnetic radio emission and 1D rotationally symmetric LDF (Gaussian + sigmoid)
- Corrected radiation energy S_{rad}: integral of LDF + Xmax correction
- Refrain from calibrating √Srad to shower energy until radio energy scale is established. (cf. next talk by Max Büsken) but use E_{EM}(Srad) for event selection

LDF validation for AERA

 S_{rad} uncertainties underestimated (cf. talk by Sara Martinelli), increase uncertainty by additional 10%

- Reconstruction performs worse for lower zenith angles (expected)
- Restrict analyis to $65^{\circ} < \theta < 80^{\circ}$
- Remaining bias maybe related to signal processing, eg. RFI removel

Hadronic model prediction

- Hybrid events allow measuring N19($\sqrt{S_{rad}}$) and compare result for data and simulations.
- Derive expectation from more than 100.000 corsika showers (no radio information).
- Reconstruct N19 and MC true S_{rad} calculated from energy of the electromagnetic component.
 - Show central 68% of the distribution. Bands mostly similar for all hadronic models.

Hadronic model prediction

- Hybrid events allow measuring N19($\sqrt{S_{rad}}$) and compare result for data and simulations.
- Derive expectation from more than 100.000 corsika showers (no radio information).
- Reconstruct N19 and MC true S_{rad} calculated from energy of the electromagnetic component.
- Show central 68% of the distribution. Bands mostly similar for all hadronic models.

Data selection

- Independent WCD and AERA reconstruction
- AERA data from 26.06.2013 to 01.05.2019
 → 31 events after cuts (~4 to 12 EeV WCD energy)
- Extended bad period DB needed for newer data, work in progress.
- Strongest cut: high energy threshold of 4 EeV

cut	number of events after cut
$65^{\circ} \le \theta_{\rm SD} \le 80^{\circ}$	1521
number of candidate stations ≥ 5	922
Full hexagon of stations	791
no thunderstorm conditions	707
${ m SD-RD}$ opening angle $< 2.08^\circ$	655
$E_{\rm EM} > 4 {\rm EeV}$	91
station inside Cherenkov radius	45
reduced χ^2 of LDF fit < 5	38
number of stations > 5	34
${ m relative} \; E_{ m EM} \; { m uncertainty} < 0.2$	31

Muon content with AERA-WCD hybrid events

Marvin.gottowik@kit.edu | ARENA 2024 | Slide 10

Measured muon content

- Muon content in data consistent with model prediction for iron primaries
- Lighter composition expected from Xmax
 → muon puzzle
- Results are consistent with independent Auger analyses in different energy ranges

Summary & Outlook

- First measurement of the muon deficit with radio-hybrid events.
- Reconstruction of CoREAS simulations agrees with MC prediction.
- Analysis of 31 events in \sim 6 years of data shows fewer muons in simulations than in measured data.
 - Low statistics due to small area of AERA & high energy threshold of 1500 m WCD.
 - Results qualitatively consistent with independent Auger analyses.
- Finalizing publication including data after 01.05.2019.
- High statistics measurements in the future with
 - AERA and 750 m WCD at lower energies and
 - RD and 1500 m WCD at highest energies.

Hadronic model predictions

 Very similar predictions for QGSJET-II.04, Sibyll-2.3d and EPOS LHC

Srad uncertainty rescaling

- Original uncertainty from propagating station signal uncertainty through the LDF fit.
 - Station signal uncertainty too small, cf. S. Martinelli. Hopefully improves with new signal model implementation.
 - One-time thing, keep it simple
 → one global factor
 - Adding 10% in quadrature yields pull distributions looking like a normal.

FD composition

cf. PoS(ICRC2023)319

Event selection

cut	number of events after cut
$65^{\circ} \le \theta_{\rm SD} \le 80^{\circ}$	1521
number of candidate stations ≥ 5	922
Full hexagon of stations	791
no thunderstorm conditions	707
${ m SD-RD}$ opening angle $< 2.08^\circ$	655
$E_{\rm EM} > 4 {\rm EeV}$	91
station inside Cherenkov radius	45
reduced χ^2 of LDF fit < 5	38
number of stations > 5	34
relative $E_{ m EM}$ uncertainty < 0.2	31

