

Deployment and Status Update of the Radar Echo Telescope

Dylan Frikken on behalf of the Radar Echo Telescope collaboration

Outline

- Radar Echo Telescope for Cosmic Rays (RET-CR)
 - Big Picture
 - Method validation
 - Detector geometry
 - Deployment

What is the Radar Echo Telescope for Cosmic Rays?

- Big Picture:
 - Detect the ionization trail from a in-ice cosmic ray shower via active radar sounding
 - Use in-ice cosmic ray showers to test the radar echo method for a future neutrino detector (RET-N)

Ionization Trail

 High-energy particle interactions create a cascade of relativistic particles

 These cascade particles lose energy to ionization leaving behind a short-lived blob of charge, called the lonization Trail

 The length of time this trail persists (the Free Electron Lifetime) depends on the material properties for free electrons

• The length and direction of this Ionization trail can tell us information about the primary

In-Ice Cosmic Rays

- At high elevation, the in-ice cascade contains a significant fraction of the total cosmic ray shower energy
- There is a relative abundance of high-energy cosmic rays compared to UHE neutrinos (~1/day for cosmic rays, ~1/decade for UHE neutrinos)

https://doi.org/10.1103/PhysRevD.106.043023

- Basic concept:
 - A transmitter (Tx) broadcasts radio waves into a volume

- Basic concept:
 - A transmitter (Tx) broadcasts radio waves into a volume
 - Receiver(s) (Rx) monitor that volume

- Basic concept:
 - A transmitter (Tx) broadcasts radio waves into a volume
 - Receiver(s) (Rx) monitor that volume
 - If some object that reflects radio is present in the volume, the transmitted signal will reflect into the receiver

Method Validation: SLAC T-576

- Several experiments ran over many decades, culminating in the T-576 experiment at SLAC
 - The beam of electrons had a similar energy density to the ionization trail expected for UHE neutrinos and in-ice high energy cosmic ray showers
 - High-density Polyethylene (HDPE) has similar radio propagation properties to polar ice
 - Interrogated a beam illuminated target with a radar system, attempting to measure a radar echo off the ionization trail

Method Validation: SLAC T-576

First observation of a radar echo off a particle induced ionization trail!

PHYSICAL REVIEW LETTERS 124, 091101 (2020)

Editors' Suggestion Featured in Physics

Observation of Radar Echoes from High-Energy Particle Cascades

S. Prohira⁶,^{1,7} K. D. de Vries⁶,² P. Allison,¹ J. Beatry⁶,¹ D. Besson⁶,^{3,4} A. Connolly⁶,¹ N. van Eijndhoven⁶,² C. Hast⁶,⁵ C.-Y. Kuo,⁶ U. A. Latif⁶,³ T. Meures,⁷ J. Nam,⁶ A. Nozdrina⁶,³ J. P. Ralston,³ Z. Riesen⁶,⁸ C. Sbrocco,¹ J. Torres⁶,¹ and S. Wissel⁸

RET-CR 2023 Season

- RET-CR was deployed in May 2023 and ran for just under a month
- The 2023 RET-CR season was cut short due to loss of DAQ resulting from overheating
- The main system enclosure (DAQ) was placed into a dug hole and covered with plywood to keep drifting snow from entering its filter system
- Excess heat from the Tx amplifiers caused the DAQ enclosure to melt the hole and break cables

RET-CR Layout

- Phased-Array Transmitter (Tx)
- Tx at center of geometry
- Tx broadcasting 180 MHz continuous sinewave (CW)
- Four receivers (Rx)
- Five surface stations

RET-CR Site Map, GNSS Survey 15th & 19th May, 2024 TX at (lat=72.605928 N, lon=-38.35038826 E), alt = 3264.844 m (a.s.l)

RET-CR Surface Stations

- Five independent surface stations
- Two scintillator panels separated by 20 m
- •One SKALA antenna
- The scintillator panels coincidence is sent to central station which forms low level trigger

RET-CR 2024 Season Improvements

- New thermal management system
 - DAQ crate is now above surface
 - Heatsink cools the Tx amplifiers
- New scintillator timing system
- New surface station electronics
- Two additional surface stations (far baseline outriggers)
- One additional receiver
- Various on-site ice property measurements taken

RET-CR Transmitter Cancellation

- Problem: high power transmitter close to receivers will saturate amplifiers
- Solution: cancel the direct and reflected transmit signal out of the receiver path
- Cancellation signal is input to Rx line before amplification

RET-CR Transmitter Cancellation

RET-CR Initial Performance

- Second stage of transmitter signal cancellation routine shows a ~60 dBm/Hz reduction of received power
- Prevents saturation of receiver antennas while allowing signal through uncancelled

RET-CR 2024 Deployment

- May 2024 Deployment team:
 - Advanced Team (1 May 22 May)
 - Steven Prohira University of Kansas
 - Simon De Kockere Vrije Universiteit Brussel
 - Dylan Frikken Ohio State University
 - Late Team (9 May 22 May)
 - Alex Kyriacou University of Kansas
 - Curtis McLennan University of Kansas

RET-CR Deployment

RET-CR Deployment

RET-CR Deployment

Acknowledgements

- We would like to acknowledge the following people/groups
 - The CODALEMA collaboration for providing the surface radio DAQs used for RET-CR
 - The IceCube collaboration for providing the scintillator panels
 - The Summit Station staff for providing us cargo logistics, food, warmth, and fun!

Future Timeline

$2023 \quad 2024 \quad 2025 \quad 2026 \quad 2027 \quad 2028$

RET-CR

RET-CR results

RET-N Development

RET-N

RET-CR Status Update

- Even with the bandwidth limitations of a remote station, we can still monitor the experiment in real time!!
- The "waveform" on the right is a forced triggered event from last night

				RET.	202	2406	14	.032	2459	.000	00045	519.	RDF	ζ				
4000	+																	+
			+		-	F	%	%	+ %			+			+			I
3000	#+	#**	#*	%%#%%#		#%%	%‡	#%%	%	\$	%%	%	6 %	#%	\$%%	6 *	%**	***-
	%%%%	\$%%%#	#%%%%	{%%#%%%%	%%9	6%%%	%%	%%%	%%%	%%%%	6#%%	6#%%	6%%	6%%\$	%%%	6%%	%##	###
2000	%%%%	\$%%%	<i>/</i> %%%/	/////////// /////////////////////////	%%9	%%%	%%	%%%	%%% %	%%%%	<i>%</i> %%%	%% %	%%%	%% %	%%%	6%%	%%%	\$\$\$-
	%%%%	\$%%%	<i>/</i> %%%/	/////////// /////////////////////////	%%9	%%%	%%	%%%	%%% %	%%%%	<i>%</i> %%%	%% %	%%%	%% %	%%%	6%%	%%%	%%%
1000	%%%%	\$%%%	<i>/%%%</i> /	/////////// /////////////////////////	%%9	%%%	%%	%%%	%%% %	%%%%	<i>%</i> %%%	%% %	%%%	%% %	\$%%%+	1%@	10000	@@@_
	0000	00000	00000	000000000	@@@	0000	@@@	0000	20000	<u>a</u> @@@	00000	0000	0000	Prea	Idou	t@+		+ I
0	0000	00000	00000	000000000	@@@	0000	@@@	0000	20000	<u>a</u> @@@	00000	0000	0000	eri	ggei	~@*	***	***-
-1000	%%%%	\$%%%	<i>//////</i> //	/////////// /////////////////////////	%%9	%%%	%%	%%%	%%% %	%%%%	<i>%</i> %%%	%% %	%%%	%% %	%%%	6%%	%%%	+-
	%%%%	\$%%%	<i>//////</i> //	/////////// /////////////////////////	%%9	%%%	%%	%%%	%%%	%%%%	<i>%</i> %%%	%%%	%%%	%% %	%%%	6%%	%%%	
-2000	%%%%	\$%%%	<i>/%%%</i> /	////////// //////////////////////////	%%%	%%%	%%	%%%	%%%	%%%%	<i>%</i> %%%	%%%	%%%	%% %	%%%	6%%	%%%	+-
	%%%%	\$%%%	<i>/%%%</i> /	{#%%%%%%	%%9	%%%	%%	6%%7	#\$#%	%#%%	<i>%</i> %%%	%%%	%%%	%% %	%%%	6#%	%%%	
-3000	#+#	%%%#	#%	%#%%#*	#	%%#	#%%	%*	##%	%	6%#%	%	%%%	6%#%	5 ##7	\$ %	6 %%	+-
		#		#%		%#	# 9	* %	%		#	%		%	7	¥	%	
-4000	-+					*	1 9	6	I			%					%	+-
			+		-	F			+			+			+			
-5000	+																	+
	0 1000			20	2000			3000 4 ns			4000			5000			600	

Thank you!

RET Collaboration

- The Ohio State University
- IIHE/Vrije Universiteit Brussel & Université Libre de Bruxelles
- University of Kansas
- Penn State University
- UW Madison
- National Taiwan University
- SLAC National Accelerator Laboratory
- University of Chicago
- Radboud University

Backup

Radar Cross Section

- How "detectable" is the target using radar?
- Dictates the amount of power of the reflected (blue) waves
- Ignores transmitted signal properties, media effects, and baseline distance
- Goal of stealth plane design is to minimize this value

Investigation of Received Signal Properties

• RET simulated using RadioScatter (in-house radar reflection simulation with GEANT4) arXiv:1710.02883

- Three phases of a RET event:
 - Cascade development

Investigation of Received Signal Properties

• RET simulated using RadioScatter (in-house radar reflection simulation with GEANT4) arXiv:1710.02883

- Three phases of a RET event:
 - Cascade development
 - Cascade as a static reflector

Investigation of Received Signal Properties

• RET simulated using RadioScatter (in-house radar reflection simulation with GEANT4) arXiv:1710.02883

- Three phases of a RET event:
 - Cascade development
 - Cascade as a static reflector
 - Recombination/Attachment