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BEACON: Beamforming Elevated Array for COsmic Neutrinos

 Concept: 0(1000) independent radio interferometers on mountaintops, designed
to detect the radio emission of upgoing air showers created by earth-skimming v,

* Goal: measure the flux of v; at E> 100 PeV

* Advantages:

BEACON

+ radio = low cost, high duty cycle
. . 0\\““\ pp
+ high elevation = large detector volume eievation >2km

+ phased array trigger = greater >

sensitivity and directional rejection of
background

Radio Signal

Concept paper: S. Wissel et al.
JCAP11(2020)065

Station Tau Decay
[ (]
Extensive Air <A'Q>
Shower
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Monte Carlo Simulation

e Multiple Antenna Arrays on Mountains Tau Sensitivity

e Monte Carlo which calculates the effective area of any configuration of
mountaintop phased arrays to point-sources of neutrinos

e Accounts for the effective areas of individual stations overlapping

] m Probability that the
Geometric Area in View . .
resulting shower is detected
N

A
A(t, Evr a, o, ¢; A, h) ~ (T* ’ xi,E)Pi,exitPi,detect

Probability that
T exits the Earth

# of Events

Generated
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From each station, find where a cone Union of all the areas = 4.
in the source direction (—7,) Uniformly sample tau exit
intersects Earth points (X; g)

) Decay distances from exponential
P; exit and T energies distribution. Shower energies Electric Fields from ZHAireS

from NuTauSim from PYTHIA radio-morphing

Peak voltages from
simulated antenna gain
and impedance

> V.ms due to galactic and > VN X (V Vo) > 0

ground temperature at any station = P; getect

N

A

A(t; Ev» a, 5: ¢» )L» h) ~ WQZ(T* ’ xi,E)Pi,exitPi,detect
i=1
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Simulation Setup

e 100 stations consisting of 10 phased antennas
e Spaced 3 km apart along same longitude, centered on

location of BEACON Prototype é:; 'Ef.,:a;
e 3 km altitude {(J’;{/

e FacingEast, 120° FoV
e SNR=5trigger

HPol Reallzed Gain (dBi) HPol Realized Gain (dBi)
90° up 90° Horizon, North
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Declination [ ©]
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Astrophysical Neutrino Sources

Declination [ ° ]

Prilli %

"‘n:g PennState

Day-Average

 AGN/FSRQ/Blazars
* Tidal Disruption Events

* Gamma Ray Bursts
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Short-Duration Point Source Sensitivity

Short-Duration Point Source Sensitivity
i
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Long-Duration Point Source Sensitivity

Long-Duration Point Source Sensitivity
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Diffuse Flux Sensitivity

T 21
] sm(H)f Aeff(d)» 8) d¢ do
0 0

>

3'FC90’E
AQ(E) -In10- T

E*¢(E) =
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5-year Diffuse Flux Sensitivity
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Diffuse Flux Sensitivity

5-year Diffuse Flux Sensitivity
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Adding
Topography ..
to Marmots

Does it help or hurt?
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Exit points are now
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Effect of Topography at the Prototype Site
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* Factor of 1-3 increase in
effective area and aperture at
the prototype site

* Effectis site dependent.
Topography:
+ Increases surface area

+ Creates more targets for
earth-skimming neutrinos

— Can block line-of-sight to
taus
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Conclusions

o« BEACON is highly sensitive to transients that
pass into its instantaneous field of view

o Large FoV and position near equator allows
many sources to be observed over time

o High elevation sites coupled with phasing
produce an efficient detector design

e Topography can further improve sensitivity

N
BEACON

Andrew Zeolla
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Diffuse Flux Sensitivity

5-year Diffuse Flux Sensitivity

103

* Lowering our trigger
threshold increases our
aperture by a factor of 5 at
100 PeV.
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Accounting for Overlap

* Unless there is zero overlap
between the effective areas
of each station, linear scaling
cannot be assumed

e Stations must be spaced far
apart (>10 km) for zero
overlap to occur

Aperture [km? sr]

* The effect is energy
dependent
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Geometric Area

1) Direction to source = shower-axis

2) Create cone of vectors around shower-axis, with the vertex at each station

3) Find where vectors intersect a sphere (an ellipse).

4)  Sinusoidally project intersection points (3D = 2D while conserving area)

5) Find the union of all the polygons (Shapely). Find the total area (4,)

6) Uniformly sample points within the total area via Constrained Delaunay
Triangulation

7) Inverse projection

'3 PennState
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P exit

e The probability for each event to have exited the Earth, as well the energy of the

resulting 7, is determined by the interpolation of a LUT generated using
NuTauSim

e The decay point of the Tis randomly sampled from an exponential decay
distribution. The energy of the resulting shower is determined by decay
distributions generated using PYTHIA.

@ PennState 22



Electric Field

e Anyevent lying outside of a station’s viewing area is assumed undetectable

e Aninterpolation of a LUT is used to determine the peak electric field as a

function of frequency for an event given it’s view angle, exit zenith angle, and
decay altitude.

e The peakelectric field is also scaled to account for energy, distance to decay,
and the differing geomagnetic field

(f) = (F) * event Dgim . Bevent . sin(¥ X B) gpent
Ecven Esim A
Esim Devent Bsim sin(¥ X B)gim
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Electric Field
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Voltage and Trigger

o The electric field is then converted to voltage given the gain (8, ¢) and impedance
of the BEACON antennas (XFdtd), or by assuming an isotropic gain and a perfectly
matched antenna.

e V, . .ISassumed to be due to galactic noise (Dulk parameterization) and the
ground (300 K)

o The SNR: VN X V/Vrms Is then calculated, and if it exceeds a chosen threshold a
trigger occurs

e Aneventis considered detected if any station triggers on it 2 Piotoct
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