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Tau Exit
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Figure from F.G. Schröder, Nuclear and Particle Physics Proceedings 279-281 (2016) 190 
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BEACON: Beamforming Elevated Array for COsmic Neutrinos

• Concept: 𝓞(1000) independent radio interferometers on mountaintops, designed 
to detect the radio emission of upgoing air showers created by earth-skimming 𝜈𝜏

• Goal: measure the flux of 𝜈𝜏 at E > 100 PeV

• Advantages:
+ radio = low cost, high duty cycle
+ high elevation = large detector volume
+ phased array trigger = greater 
sensitivity and directional rejection of 
background

Extensive Air 

Shower

Concept paper: S. Wissel et al. 
JCAP11(2020)065
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Monte Carlo Simulation

● Multiple Antenna Arrays on Mountains Tau Sensitivity

● Monte Carlo which calculates the effective area of any configuration of 
mountaintop phased arrays to point-sources of neutrinos

● Accounts for the effective areas of individual stations overlapping

𝐴 𝑡, 𝐸𝜈 , 𝛼, 𝛿, 𝜙, 𝜆, ℎ ≈
𝐴𝑔

𝑁


𝑖=1

𝑁

( Ƹ𝑟∗ ∙ ො𝑥𝑖,𝐸)𝑃𝑖,exit𝑃𝑖,detect

Geometric Area in View

# of Events 
Generated

Probability that the 
resulting shower is detected

Probability that 
τ exits the Earth 
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From each station, find where a cone 
in the source direction (− Ƹ𝑟∗) 

intersects Earth

𝑃𝑖,exit and 𝜏 energies 
from NuTauSim

Decay distances from exponential 
distribution. Shower energies 

from PYTHIA

Peak voltages from 
simulated antenna gain 

and impedance 

𝑉𝑟𝑚𝑠 due to galactic and 
ground temperature

𝑁 × (𝑉/𝑉𝑟𝑚𝑠) > 𝜎 
at any station ➔ 𝑃𝑖,detect 

𝐴 𝑡, 𝐸𝜈 , 𝛼, 𝛿, 𝜙, 𝜆, ℎ ≈
𝐴𝑔

𝑁


𝑖=1

𝑁

( Ƹ𝑟∗ ∙ ො𝑥𝑖,𝐸)𝑃𝑖,exit𝑃𝑖,detect

Union of all the areas = 𝐴𝑔. 

Uniformly sample tau exit 
points ( ො𝑥𝑖,𝐸)

Electric Fields from ZHAireS 
radio-morphing
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Simulation Setup
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● 100 stations consisting of 10 phased antennas
● Spaced 3 km apart along same longitude, centered on 

location of BEACON Prototype
● 3 km altitude
● Facing East, 120∘ FoV
● SNR = 5 trigger
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Effective Area (100 Stations)
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𝐸𝜈 = 1 EeV
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Astrophysical Neutrino Sources
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Large Antenna FoV

Position Near Equator

Many Sources Observed!

• AGN/FSRQ/Blazars

• Tidal Disruption Events

• Gamma Ray Bursts



Maximum 

Instantaneous 

Effective Area

𝐸2𝜙 𝐸 =
3 ∙ 𝐹𝐶90 ∙ 𝐸

𝐴𝑒𝑓𝑓 𝐸 ∙ ln 10

Short-Duration Point Source Sensitivity
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Day-Average 

Effective Area 

Averaged over 𝛿 

Long-Duration Point Source Sensitivity

𝐸2𝜙 𝐸 =
3 ∙ 𝐹𝐶90 ∙ 𝐸

𝐴𝑒𝑓𝑓 𝐸 ∙ ln 10
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Diffuse Flux Sensitivity
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𝐴𝑒𝑓𝑓 𝜙, 𝜃  𝑑𝜙 𝑑𝜃

𝐸2𝜙 𝐸 =
3 ∙ 𝐹𝐶90 ∙ 𝐸

𝐴Ω 𝐸 ∙ ln 10 ∙  𝑇
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Diffuse Flux Sensitivity
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• With 100 stations and 5 
years of data, BEACON can 
begin to constrain 
cosmogenic flux models

• High elevation sites and 
phasing create an efficient 
detector

1,000 
Antennas Total

10,000 
Antennas Total
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Adding 
Topography 
to Marmots

Use intersections with mesh 
to determine grammage

Determine 
line-of-sight 

to tau decays

Exit points are now 
sampled on a 

triangulated mesh of 
Earth’s surface

Does it help or hurt?
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Effect of Topography at the Prototype Site

• Factor of 1-3 increase in 
effective area and aperture at 
the prototype site 

• Effect is site dependent. 
Topography:

+ Increases surface area

+ Creates more targets for 
earth-skimming neutrinos

‒ Can block line-of-sight to 
taus

Andrew Zeolla

preliminary

preliminary

𝐸𝜈 = 1 EeV



● BEACON is highly sensitive to transients that 
pass into its instantaneous field of view

● Large FoV and position near equator allows 
many sources to be observed over time

● High elevation sites coupled with phasing 
produce an efficient detector design

● Topography can further improve sensitivity
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Conclusions
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Backup Slides
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Diffuse Flux Sensitivity
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• Lowering our trigger 
threshold increases our 
aperture by a factor of 5 at 
100 PeV.



Accounting for Overlap
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• Unless there is zero overlap 
between the effective areas 
of each station, linear scaling 
cannot be assumed

• Stations must be spaced far 
apart (>10 km) for zero 
overlap to occur

• The effect is energy 
dependent



Geometric Area
1) Direction to source = shower-axis

2) Create cone of vectors around shower-axis, with the vertex at each station

3) Find where vectors intersect a sphere (an ellipse).  

4) Sinusoidally project intersection points (3D → 2D while conserving area)

5) Find the union of all the polygons (Shapely). Find the total area (𝐴𝑔)

6) Uniformly sample points within the total area via Constrained Delaunay 
Triangulation

7) Inverse projection
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𝑷𝒆𝒙𝒊𝒕

● The probability for each event to have exited the Earth, as well the energy of the 
resulting 𝜏, is determined by the interpolation of a LUT generated using 
NuTauSim

● The decay point of the 𝜏 is randomly sampled from an exponential decay 
distribution. The energy of the resulting shower is determined by decay 
distributions generated using PYTHIA.
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Electric Field

● Any event lying outside of a station’s viewing area is assumed undetectable

● An interpolation of a LUT is used to determine the peak electric field as a 
function of frequency for an event given it’s view angle, exit zenith angle, and 
decay altitude.

● The peak electric field is also scaled to account for energy, distance to decay, 
and the differing geomagnetic field
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𝐸𝑒𝑣𝑒𝑛𝑡(𝑓) = 𝐸𝑠𝑖𝑚(𝑓) ∗
𝜀𝑒𝑣𝑒𝑛𝑡

𝜀𝑠𝑖𝑚
∗

𝐷𝑠𝑖𝑚

𝐷𝑒𝑣𝑒𝑛𝑡
∗

𝐵𝑒𝑣𝑒𝑛𝑡

𝐵𝑠𝑖𝑚
∗

sin( ො𝑣 × 𝐵)𝑒𝑣𝑒𝑛𝑡

sin( ො𝑣 × 𝐵)𝑠𝑖𝑚
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Electric Field
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Voltage and Trigger

● The electric field is then converted to voltage given the gain (𝜃, 𝜙) and impedance 
of the BEACON antennas (XFdtd), or by assuming an isotropic gain and a perfectly 
matched antenna.

● Vrms is assumed to be due to galactic noise (Dulk parameterization) and the 
ground (300 K)

● The SNR: 𝑁 × ൗ𝑉
V𝑟𝑚𝑠

 is then calculated, and if it exceeds a chosen threshold a 
trigger occurs

● An event is considered detected if any station triggers on it → 𝑃𝑑𝑒𝑡𝑒𝑐𝑡
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