Sensitivity of BEACON to Ultrahigh Energy Neutrinos

ARENA 2024 **Andrew Zeolla** On Behalf of the BEACON Collaboration

for Cosmological Physics at The University of Chicago

THE OHIO STATE

UNIVERSITY

Radboud Universiteit

BEACON: Beamforming Elevated Array for COsmic Neutrinos

- Concept: $\mathcal{O}(1000)$ independent radio interferometers on mountaintops, designed to detect the radio emission of upgoing air showers created by earth-skimming v_{τ}
- Goal: measure the flux of ν_{τ} at E > 100 PeV
- Advantages:

Monte Carlo Simulation

- **M**ultiple **A**ntenna A**r**rays on **Mo**untains **T**au **S**ensitivity
- Monte Carlo which calculates the effective area of any configuration of mountaintop phased arrays to point-sources of neutrinos
- Accounts for the effective areas of individual stations overlapping

Simulation Setup

- 100 stations consisting of 10 phased antennas
- Spaced 3 km apart along same longitude, centered on location of BEACON Prototype
- 3 km altitude
- Facing East, 120[∘] FoV
- $SNR = 5$ trigger

Effective Area (100 Stations)

Astrophysical Neutrino Sources

Short-Duration Point Source Sensitivity

Maximum **Instantaneous** Effective Area

Long-Duration Point Source Sensitivity

Day-Average Effective Area Averaged over δ

Diffuse Flux Sensitivity

 $\overline{1}$

0

PennState

 π

5-year Diffuse Flux Sensitivity

Andrew Zeolla

Diffuse Flux Sensitivity

- With 100 stations and 5 years of data, BEACON can begin to constrain cosmogenic flux models
- High elevation sites and phasing create an efficient detector

Adding Topography to Marmots

Elevation (m)

PennState

15

Effect of Topography at the Prototype Site

- **Factor of 1-3 increase** in effective area and aperture at the prototype site
- **Effect is site dependent.** Topography:
	- Increases surface area
	- + Creates more targets for earth-skimming neutrinos
	- ‒ Can block line-of-sight to taus

Conclusions

ennState

- BEACON is highly sensitive to transients that pass into its instantaneous field of view
- Large FoV and position near equator allows many sources to be observed over time
- High elevation sites coupled with phasing produce an efficient detector design
- Topography can further improve sensitivity

Backup Slides

Diffuse Flux Sensitivity

• Lowering our trigger threshold increases our aperture by a factor of 5 at 100 PeV.

Accounting for Overlap

- Unless there is zero overlap between the effective areas of each station, linear scaling cannot be assumed
- Stations must be spaced far apart (>10 km) for zero overlap to occur
- The effect is energy dependent

Geometric Area

- 1) Direction to source = shower-axis
- 2) Create cone of vectors around shower-axis, with the vertex at each station
- 3) Find where vectors intersect a sphere (an ellipse).
- 4) Sinusoidally project intersection points (3D \rightarrow 2D while conserving area)
- 5) Find the union of all the polygons (Shapely). Find the total area (A_q)
- 6) Uniformly sample points within the total area via Constrained Delaunay **Triangulation**

16.05

16.10

7) Inverse projection

P_{exit}

- The probability for each event to have exited the Earth, as well the energy of the resulting τ , is determined by the interpolation of a LUT generated using NuTauSim
- The decay point of the τ is randomly sampled from an exponential decay distribution. The energy of the resulting shower is determined by decay distributions generated using PYTHIA.

Electric Field

- Any event lying outside of a station's viewing area is assumed undetectable
- An interpolation of a LUT is used to determine the peak electric field as a function of frequency for an event given it's view angle, exit zenith angle, and decay altitude.
- The peak electric field is also scaled to account for energy, distance to decay, and the differing geomagnetic field

$$
E_{event}(f) = E_{sim}(f) * \frac{\varepsilon_{event}}{\varepsilon_{sim}} * \frac{D_{sim}}{D_{event}} * \frac{B_{event}}{B_{sim}} * \frac{\sin(\hat{v} \times \hat{B})_{event}}{\sin(\hat{v} \times \hat{B})_{sim}}
$$

Electric Field

Voltage and Trigger

- The electric field is then converted to voltage given the gain (θ , ϕ) and impedance of the BEACON antennas (XFdtd), or by assuming an isotropic gain and a perfectly matched antenna.
- $\bullet\;\;V_{rms}$ is assumed to be due to galactic noise (Dulk parameterization) and the ground (300 K)
- The SNR: × ൗ \rm_{Vrms} is then calculated, and if it exceeds a chosen threshold a trigger occurs
- An event is considered detected if any station triggers on it $\rightarrow P_{detect}$

