

Next-Generation Triggering: A Novel Event-Level Approach

Jelena Köhler for the GRAND collaboration Karlsruhe Institute of Technology

10th International Workshop on Acoustic and Radio EeV Neutrino Detection Activities (ARENA)

The GRAND Challenge

Autonomous Triggering

Event Level Trigger Method

Improve and/or validate event classification using 2 methods

$$\theta = 64^{\circ}$$

$$\theta = 69^{\circ}$$

$$\theta = 86^{\circ}$$

"ADC fluence" in ground plane → 1 pixel = 1 antenna

Event Level Trigger Method

Improve and/or validate event classification using 2 methods

Method 1

Reconstruction of Trigger Parameters with timing

 \star signal arrival times \to Plane Wave Fit \to θ_{reco} , φ_{reco}

- * approximates curved wavefront with a flat plane
- * orientation of best-fit plane determines zenith and azimuth

Method 2

Reconstruction of Trigger Parameters with signal strength

 \star measured signal strength \to a & b $\to heta_{fit}$, $arphi_{fit}$

- \star θ_{fit} : from eccentricity of ellipse
 - → based on conic section model of air shower
- $\star \varphi_{fit}$: from orientation of ellipse
 - → introduces 180° ambiguity

Method 2

Reconstruction of Trigger Parameters with signal strength

 \star measured signal strength \to a & b $\to heta_{fit}$, $arphi_{fit}$

- \star θ_{fit} : from eccentricity of ellipse
 - → based on conic section model of air shower
- $\star \varphi_{fit}$: from orientation of ellipse
 - → introduces 180° ambiguity

compare to timing method

⇒ if the values match, trigger

Simulation Analysis

Realistic Simulated Signal With Measured Noise

based on GRAND's Data Challenge 2 (realistic simulation library) - Oscar's talk + more sophisticated noise selection - Pablo's talk

ZHAireS simulations

Proton primary $\log_{10}(E/\text{eV}) \in [16.5,18.5]$ $\theta \in [30.6^\circ,87.3^\circ], \phi \in [0^\circ,360^\circ]$

measured noise (GP300/GRAND@Auger)

Realistic Simulated Signal With Measured Noise

based on GRAND's Data Challenge 2 (realistic simulation library) - Oscar's talk + more sophisticated noise selection - Pablo's talk

Simulated Signal + Measured Noise

~7k events

Method 1: Timing

~7k events

- ★ Plane Wave Fit
 - * sophisticated analytical method including errors
- * sub degree resolution

Method 2: Signal Strength ⇒ completely independent of PWF

~7k events

biased towards larger angles

→ could be due to border effects

⇒ investigate this method further

180° ambiguity excluded

Comparing the Methods

~7k events

bias most likely from signal strength method

combination of both methods

⇒ powerful discrimination of background

Usage: online triggering

Delta Space angle

angular difference between true and reconstructed arrival directions

→ 3rd quantile at 14.6° (to be improved)

15

Outlook

Next Steps in Signal Strength Analysis

⇒ investigate this method further

or find alternatives!

Next Steps in Signal Strength Analysis

Further Investigation → fix bugs

Next Steps in Signal Strength Analysis

Further Investigation → more options

- * size of footprint
- * distribution of signal strength

Alternative to Signal Strength Analysis

Polarization Analysis based on work by Simon Chiche

Figure 1: Total (geomagnetic + charge excess) electric field amplitude (color scale) and direction (arrows) of the geomagnetic (*left*) and charge excess (*right*) emissions, for a shower with primary particle energy E = 0.68 EeV and zenith angle $\theta = 53^{\circ}$, represented in the plane perpendicular to the shower axis ($\mathbf{e_{v \times B}}$, $\mathbf{e_{v \times (v \times B)}}$). A small number of antennas is also generated outside of the star-shape pattern in our simulations, for cross checks.

https://arxiv.org/pdf/2202.06846

Noise Set Analysis

currently only measurements from GP13 → too small

Summary

- * trigger radio autonomously by cross-validation of two methods
- * developed for GRAND, but generally applicable to any large-scale radio array

Backup

Zenith Calculation

$$\sin \theta = \frac{\sqrt{a^2 - b^2}}{a} \cdot 1$$

Azimuth Calculation

$$\tan \varphi = \frac{dy}{dx}$$