

Giant Radio Array for Neutrino Detection

# **Reconstruction of highly-inclined extensive** air showers in GRAND

**Oscar Macías** (SFSU) On behalf of the **GRAND** Collaboration

> **ARENA 2024 KICP, University of Chicago**





SAN FRANCISCO STATE UNIVERSITY











Giant Radio Array for Neutrino Detection

### Decoene (2021)



## Reconstruction of highly-inclined Air Showers (conventional + ML methods)



### **Realistic Data Simulation libraries**

- ✓ Include Galactic noise
- ✓ Include antenna response + RF chain + GPS jitter
- ✓ More than 20,000 simulations





## **Reconstruction of highly-inclined Air Showers (conventional + ML methods)**



### **Realistic Data Simulation libraries**

- ✓ Include Galactic noise
- $\checkmark$  Include antenna response + RF chain + GPS jitter
- ✓ More than 20,000 simulations

### **Reconstruction of Air Showers** ✓ Plane Wave Front (PWF): fast timing & direction reconstruction



Giant Radio Array for Neutrino Detection

✓ Fitting (empirical and Physics informed) of Angular Distribution Function: more precise shower parameter reconstruction

Empirical fitting of lateral distribution function

✓ Graph Neutral Networks for EAS studies

## see talks by L. Gülzow & J. Köhler



## **Reconstruction of highly-inclined Air Showers (conventional + ML methods)**



### **Realistic Data Simulation libraries**

- ✓ Include Galactic noise
- ✓ Include antenna response + RF chain + GPS jitter
- ✓ More than 20,000 simulations

### **Reconstruction of Air Showers** ✓ Plane Wave Front (PWF): fast timing & direction reconstruction

- ✓ Fitting (empirical and Physics informed) of Angular Distribution Function: more precise shower parameter reconstruction
- Empirical fitting of lateral distribution function
- ✓ Graph Neutral Networks for EAS studies



Giant Radio Array for Neutrino Detection

## see talks by L. Gülzow & J. Köhler

### **Electric field reconstruction**

- ✓ E-field reconstruction with CNN
- ✓ Direction reconstruction based on polarization
- Denoising of E-field/ADC using ML



# **GRAND Data Challenge 2: a complete realistic simulation library**











# Study of the wavefront shape

## The radio wavefront allows to reconstruct the EAS direction



<u>Method</u>: adjust the wavefront model to the trigger times



see talk by Kumiko Kotera

direction accuracy = wavefront shape correctness



# **EAS Reconstruction Procedure**



# **EAS Reconstruction Procedure**

## **1)** The plane wave reconstruction

The procedure relies on the comparison of the relative trigger times from one antenna to another



Reduces the parameter space from all the directions down to a cone of a few square degrees

 $\theta_{\rm true} \in [\theta_{\rm plan} - 2^\circ, \theta_{\rm plan} + 2^\circ]$ 



Decoene+(2021)

$$\phi_{\text{true}} \in [\phi_{\text{plan}} - 1^{\circ}, \phi_{\text{plan}} + 1^{\circ}]$$

4

# **EAS Reconstruction Procedure**

## 2) Spherical wave reconstruction

Determines the best position of the point-source through the minimization of  $f(\theta, \phi, \rho, t_{\text{source}})$ 









# **EAS Reconstruction Procedure 3) Angular Distribution of the Signal**

straightforward handle on the core position (hence direction!)

 $\rightarrow$  beaming effect + Cerenkov effect + asymmetry features (Geomagnetic/Askaryan) emissions)

$$f^{\text{ADF}}(\omega,\eta,\alpha,l;\delta\omega,\mathcal{A}) = \frac{\mathcal{A}}{l} f^{\text{GeoM}}(\alpha,\eta,\mathcal{B}) f^{\text{Cerenkov}}(\omega,\delta\omega)$$

• Geomagnetic asymmetry  $\int f^{\text{GeoM}}(\alpha, \eta, \mathcal{B}) = 1 + \mathcal{B}\sin(\alpha)^2 \cos(\eta)$ 

 $\alpha$  magnetic field inclination  $\mathcal{B}$  geomagnetic strength  $\eta$  polarisation angle

energy dilution • Early-late asymmetry  $f^{\rm Cerenkov}(\omega,\delta\omega) =$  Cerenkov cone  $\left[ \left( \tan\left(\omega\right) / \tan\left(\omega_{\rm C}\right) \right)^2 - 1 \right]$ geometrical Cerenkov effect description

Credit: Valentin Decoene

 $\omega_{
m C}$ 

4 fitting parameters only:  $\{\theta, \phi, \mathcal{A}, \delta\omega\}$ 





interplay between emission mechanisms  $\rightarrow$  signal excess along the Lorentz force direction









# **Results I:** Plane Wave Reconstruction **On Data Challenge 2 Simulations**



## EAS Direction Reconstruction on "Data Challenge 2" Simulations (Analytical solution)

### DC2 simulation set:

## Simulated data including realistic noise

### Processing:

- Filter in the [50, 200] MHz frequency range
- Amplitude: Hilbert peak amplitude/Trigger time read from root files Quality cuts:
- Amplitude threshold = 110
- Antenna threshold: 5 antennas









# Results II: Reconstruction on star-shaped simulations



# Performance on Star-shaped antenna layout



## **Reconstruction of Xmax and direction of EAS on Star-shaped simulations:**

Xmax reconstruction resolution around 10g/cm^2 for very inclined showers (and 5g/cm^2 for vertical showers)

Angular reconstruction has a resolution of about  $\sim 0.1^{\circ}$ 



Follows the LOFAR methodology introduced in Buitink et al, 2014







# **Results III: Angular Distribution Function** On toy GP300 simulations



# Description of the toy GP300 EAS simulations

## **ZHAireS Simulations:**

- Primaries: Proton, Iron, Gamma
- Energy: 0.251, 0.631, 1.58, 3.98 EeV
- Zenith: [63°,87°]

## **Toy GP300 layout with infill**

- Shower core always contained in the layout
- Raw electric field data without galactic noise
- Random gaussian error = 5 ns on trigger times (GPS)
- Random gaussian error of = 10% on signal amplitudes (calibration)

### **Processing:**

- Filter in the [50, 200] MHz frequency range
- Amplitude: Hilbert peak amplitude/Trigger time Quality cuts:
- Amplitude threshold = 110
- Antenna threshold: 5 antennas



Credit: Marion Guelfand





## EAS Direction Reconstruction on toy GP300 Simulations <a href="spherical-wave-reconstruction">Spherical wave reconstruction</a>

## **Main Results:**

- Reconstruction on GP300 ZHAireS simulations with experimental uncertainties
- Excellent angular reconstruction: approx. ~0.1°
- ■ADF approx. matches angle and amplitude peak for zenith angles greater than ~70°

## <u>ADF reconstruction</u>







# Results IV: EAS Reconstruction using Machine Learning methods



# Reconstruction of EAS with Graph Neural Networks (GNN)





- Each antenna is linked to at least its three neighbors.
- Some antennas have more neighbors due to being neighbors of neighbors.

### **Training data:**



Peak time and amplitude

→Antenna position







# **Results V:** Signal Denoising using an Autoencoder





# Voltage Denoising with a ResNet Autoendoer



# Conclusions

with and without realistic noise. Preliminary results are promising.

sensitivity.

✓ Preliminary results using machine learning methods achieve a sensitivity close to standard methods. Further studies are ongoing to enhance its capabilities.



✓ Developed and tested direction reconstruction on the new Data Challenge 2 simulations

✓ Fitted an empirical Angular Distribution Function (ADF) on various sets of simulations. Early results indicate that the ADF method has the potential to increase the reconstruction

13

# **Backup Slides**



# The Angular Distribution Function (ADF)

## **Cerenkov Asymmetry**

Cerenkov cone:

- geometrical effect  $\rightarrow$  angle where all emissions arrive at same time
- signal compression  $\rightarrow$  high amplitudes
- standard computation:  $\omega_C = a\cos(1/n)$  (equal optical paths = constant n)



### Credit: Valentin Decoene

The analytical description of the Cerenkov asymmetry matches the simulated data

n = cste

 $\omega_{
m C}$ 









