ARENA 2024 KICP, University of Chicago

SAN FRANCISCO STATE UNIVERSITY

Reconstruction of highly-inclined extensive air showers in GRAND

Oscar Macías (SFSU) *On behalf of the GRAND Collaboration*

Giant Radio Array for Neutrino Detection

Decoene (2021)

Reconstruction of highly-inclined Air Showers (conventional + ML methods)

Realistic Data Simulation libraries

- \checkmark Include Galactic noise
- \checkmark Include antenna response + RF chain + GPS jitter
- \checkmark More than 20,000 simulations

Reconstruction of highly-inclined Air Showers (conventional + ML methods)

 \checkmark Fitting (empirical and Physics informed) of Angular Distribution Function: more precise shower parameter reconstruction

 \checkmark Empirical fitting of lateral distribution function

\checkmark Plane Wave Front (PWF): fast timing & direction reconstruction **Reconstruction of Air Showers**

-
-
-
- -

Giant Radio Array for Neutrino Detection

Graph Neutral Networks for EAS studies

Realistic Data Simulation libraries

- \checkmark Include Galactic noise
- \checkmark Include antenna response + RF chain + GPS jitter
- \checkmark More than 20,000 simulations

see talks by L. Gülzow & J. Köhler

Reconstruction of highly-inclined Air Showers (conventional + ML methods)

-
- \checkmark Fitting (empirical and Physics informed) of Angular Distribution Function: more precise shower parameter reconstruction
- \checkmark Empirical fitting of lateral distribution function
- Graph Neutral Networks for EAS studies
	-

Giant Radio Array for Neutrino Detectio

- \checkmark E-field reconstruction with CNN
- Direction reconstruction based on polarization
- Denoising of E-field/ADC using ML

\checkmark Plane Wave Front (PWF): fast timing $\&$ direction reconstruction **Reconstruction of Air Showers**

Realistic Data Simulation libraries

- \checkmark Include Galactic noise
- \checkmark Include antenna response + RF chain + GPS jitter
- \checkmark More than 20,000 simulations

Electric field reconstruction

see talks by L. Gülzow & J. Köhler

GRAND Data Challenge 2: a complete realistic simulation library

-
-

Credit: Valentin Decoene **3**

direction accuracy = wavefront shape correctness

Study of the wavefront shape

The radio wavefront allows to reconstruct the EAS direction

Method: adjust the wavefront model to the trigger times

see talk by Kumiko Kotera

EAS Reconstruction Procedure

4

EAS Reconstruction Procedure

1) The plane wave reconstruction

The procedure relies on the comparison of the **relative trigger times** from one antenna to another

Reduces the parameter space from all the directions down to a cone of a few square degrees

 $\theta_{\text{true}} \in [\theta_{\text{plan}} - 2^{\circ}, \theta_{\text{plan}} + 2^{\circ}]$

$$
\phi_{\text{true}} \in [\phi_{\text{plan}} - 1^{\circ}, \phi_{\text{plan}} + 1^{\circ}]
$$

EAS Reconstruction Procedure

2) Spherical wave reconstruction

Determines the best position of the point-source through the minimization of $f(\theta, \phi, \rho, t_{\text{source}})$

[km]

 $(\vec{k} \times \vec{B})$

 \vec{k} X

 $\overline{2}$

4 fitting parameters only:

straightforward handle on the core position (hence direction!)

→ beaming effect + Cerenkov effect + asymmetry features (Geomagnetic/Askaryan emissions)

$$
f^{\text{ADF}}(\omega, \eta, \alpha, l; \delta\omega, \mathcal{A}) = \frac{\mathcal{A}}{l} f^{\text{GeoM}}(\alpha, \eta, \mathcal{B}) \,\, f^{\text{Cerenkov}}(\omega, \delta\omega) \bigg|
$$

• Geomagnetic asymmetry
$$
\left| f^{\text{GeoM}}(\alpha, \eta, \mathcal{B}) = 1 + \mathcal{B}\sin(\alpha)^2 \cos(\eta) \right|
$$

 α magnetic field inclination β geomagnetic strength η polarisation angle

empirical model!

interplay between emission mechanisms \rightarrow signal excess along the Lorentz force direction

 -2

Shower plane

 $\vec{k} \times \vec{B}$ (km)

Credit: Valentin Decoene **6**

EAS Reconstruction Procedure 3) Angular Distribution of the Signal

Results I: Plane Wave Reconstruction **On Data Challenge 2 Simulations**

DC2 simulation set:

Simulated data including realistic noise

Processing:

- ◆ Filter in the [50, 200] MHz frequency range
- Amplitude: Hilbert peak amplitude/Trigger time read from root files ◆ Quality cuts:
- Amplitude threshold = **110**
- Antenna threshold: **5 antennas**

EAS Direction Reconstruction on "Data Challenge 2" Simulations (Analytical solution)

Results II: Reconstruction on star-shaped simulations

Performance on Star-shaped antenna layout

Reconstruction of Xmax and direction of EAS on Star-shaped simulations:

 \blacksquare Xmax reconstruction resolution around 10g/cm^2 for very inclined showers (and 5g/cm^2 for vertical showers)

Angular reconstruction has a resolution of about \sim **0.1** \degree

Follows the LOFAR methodology introduced in Buitink et al, 2014

Results III: Angular Distribution Function On toy GP300 simulations

Description of the toy GP300 EAS simulations

ZHAireS Simulations:

- **Perimaries: Proton, Iron, Gamma**
- Energy: 0.251, 0.631, 1.58, 3.98 EeV
- \blacksquare Zenith: [63°,87°]

Toy GP300 layout with infill

- Shower core always contained in the layout
- Raw electric field data without galactic noise
- Random gaussian error $= 5$ ns on trigger times (GPS)
- Random gaussian error of $= 10\%$ on signal amplitudes (calibration)

Processing:

- Filter in the [50, 200] MHz frequency range
- Amplitude: Hilbert peak amplitude/Trigger time Quality cuts:
- Amplitude threshold = **110**
- Antenna threshold: **5 antennas**

EAS Direction Reconstruction on toy GP300 Simulations Spherical wave reconstruction

ADF reconstruction

Main Results:

- ■Reconstruction on GP300 ZHAireS simulations with experimental uncertainties
- Excellent angular reconstruction: approx. $\sim 0.1^{\circ}$
- ■ADF approx. matches angle and amplitude peak for zenith angles greater than \sim 70 $^{\circ}$

Results IV: EAS Reconstruction using Machine Learning methods

Reconstruction of EAS with Graph Neural Networks (GNN)

Graph generation

11

Training data:

Antenna position

- Each antenna is linked to at least its three neighbors.
- Some antennas have more neighbors due to being neighbors of neighbors.

Results V: Signal Denoising using an Autoencoder

Voltage Denoising with a ResNet Autoendoer

Conclusions

with and without realistic noise. Preliminary results are promising.

Developed and tested direction reconstruction on the new *Data Challenge 2* simulations

 \checkmark Fitted an empirical Angular Distribution Function (ADF) on various sets of simulations. Early results indicate that the ADF method has the potential to increase the reconstruction

 \checkmark Preliminary results using machine learning methods achieve a sensitivity close to standard methods. Further studies are ongoing to enhance its capabilities.

sensitivity.

13

Backup Slides

The Angular Distribution Function (ADF)

Cerenkov Asymmetry

Cerenkov cone:

- geometrical effect \rightarrow angle where all emissions arrive at same time
- \bullet signal compression \rightarrow high amplitudes
- standard computation: $\omega_C = \arccos(1/n)$ (equal optical paths = constant n)

Credit: Valentin Decoene **14**

The analytical description of the Cerenkov asymmetry matches the simulated data

 $n = cste$

 $\omega_{\rm C}$

