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◦ tSZ-selected cluster samples = powerful cosmological probe 
See previous 24 cluster talks 

◦ Synthetic datasets needed for cluster cosmology 
See previous 6 simulation talks 

• Using cosmological simulations


• Two categories:


- Hydrodynamic (include baryonic physics, but slow and uncertain)


- Gravity-only / G-O (fast, but no baryons)


◦ Need post-processing to “paint” observables on G-O 

• In particular intracluster gas for SZ effects @ mm wavelengths
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Context
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Santa Barbara cluster: Gravity-only simulation

Santa Barbara cluster: Hydrodynamic simulation

CRK-HACC: Frontiere+23
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◦ ML-powered model to “paint” gas on gravity-only halos

◦ Combines: 

• A parametric gas model: thermodynamics = f(potential | parameters)


• A neural network predicting model parameters
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◦ ML-powered model to “paint” gas on gravity-only halos

◦ Combines: 

• A parametric gas model: thermodynamics = f(potential | parameters)


• A neural network predicting model parameters

◦ Trained on pairs of gravity-only / hydrodynamic simulations

◦ Fast, GPU-accelerated, differentiable (JAX)

◦ Publicly available & documented
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◦ Training simulation: 

• ,  particles


• Baryon mass resolution: 


◦ Two runs from same initial conditions: 

• Gravity-only


• Hydrodynamic


◦ Same initial conditions → Same halos! 

◦ Target data: Gas properties of hydro halos 

• For each G-O halo, find hydro counterpart


• Target = counterpart gas properties

576 Mpc/h ≳ 1010

2 × 108 M⊙/h
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Model training: Simulation pairs
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Gravity-only Hydro CDM
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• Target = counterpart gas properties

576 Mpc/h ≳ 1010

2 × 108 M⊙/h
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Model training: Simulation pairs
Introduction  Gas model Performance Application Conclusions

Gravity-only Hydro CDM + gas
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Baseline model results

Thermal pressure

Testing set: halos not seen in training

The picasso gas model 7

Symbol Meaning Compact? Minimal?

log10 (𝐿200𝐿/1014 𝑀→1𝐿↑ ) (log-scaled) Halo mass ↭ ↭
𝑁200𝐿 Halo concentration ↭ ↭

ω𝑂/𝑃200𝐿 Normalized o!set between center of mass and potential peak ↭ ↓
𝑁acc./𝑁200𝐿 Ratio between accumulated mass and NFW fit concentrations ↭ ↓
𝑁peak/𝑁200𝐿 Ratio between di!erential mass profile peak and NFW fit concentrations ↭ ↓

𝑄 Halo ellipticity, eq. (13) ↭ ↓
𝑅 Halo prolaticity, eq. (13) ↭ ↓

𝑆lmm Scale factor of last major merger ↓ ↓
𝑆25 Scale factor at which 𝐿 = 0.25 ↓ 𝐿𝑀=0 ↓ ↓
𝑆50 Scale factor at which 𝐿 = 0.50 ↓ 𝐿𝑀=0 ↓ ↓
𝑆75 Scale factor at which 𝐿 = 0.75 ↓ 𝐿𝑀=0 ↓ ↓
↔𝐿 Mass accretion rate between last two redshift snapshots ↓ ↓

TABLE 2
Description of the components of the 𝑇halo parameter vector used in the baseline model presented in §4. The last two columns denote whether the properties are

included in the compact (second rightmost) and minimal (rightmost) models, presented in §6.2 and §6.3, respectively.

• Disturbance: we use three indicators known to contain in-
formation on the relaxation state of halos. (a) the normal-
ized o!set between the center of mass and potential peak
ω𝐿/𝑀200𝑁; (b) the ratio between concentration measured
from the accumulated mass profile and an NFW fitting,
𝑁acc./𝑁200𝑁; (c) the ratio between concentration measured
from the di!erential mass profile peak and NFW fitting,
𝑁peak/𝑁200𝑁. More details on these indicators in the context
of HACC simulations can be found in Child et al. (2018), §3.

• Halo shape: We use halo ellipticity, measuring a halo’s
deviation from sphericity, and prolaticity, quantifying the
extent to which a halo is oblate (disk-shaped) or prolate
(cigar-shaped). They are defined through the halo’s semi-
axes 𝑂, 𝑃, 𝑁, where 𝑂 ↫ 𝑃 ↫ 𝑁 > 0, as:

𝑄 =
1

2𝑅

(
1 → (𝑁/𝑂)2

)
;

𝑆 =
1

2𝑅

(
1 → 2(𝑃/𝑂)2 + (𝑁/𝑂)2

)
, (13)

where 𝑅 = 1+(𝑃/𝑂)2+(𝑁/𝑂)2. For a given halo, 𝑄 ranges be-
tween 0 (spherical) and 1/2 (non-spherical), and 𝑆 between
→𝑄 (oblate) and 𝑄 (prolate). The semi-axes are computed
from the eigenvalues of the reduced inertia tensor of the
halo particles (e.g. Allgood et al. 2006; Lau et al. 2021).

• Mass assembly history: we use the scale factors
(𝑂25, 𝑂50, 𝑂75) at which the halo has achieved 25%, 50%
and 75% of its final mass, respectively; as well as the instan-
teous mass accretion rate of the halos, ↔𝑇 , between the last
two redshift snapshots of the simulation, and the scale factor
at the last major merger, 𝑂lmm, defined as the scale factor of
the Universe when a given halo underwent its last merger
with mass ratios greater than 0.3.

A summary of the notations and definitions for the components
of 𝑈halo can be found in table 2. Alternative models, relying
on input vectors containing subsets of these properties, will be
discussed in §6.

4.2. Neural network architecture

As mentioned in §2.2, we use a machine learning model to
make predictions for the parameter vector 𝑈gas from 𝑈halo.
Specifically, for the baseline model, we choose a fully-
connected neural network. First, the input vector 𝐿 is defined

as a linear rescaling of 𝑈halo: for each feature 𝑉,

𝐿𝑈 =
𝑈halo, 𝑈 → min(𝑈halo, 𝑈)

max(𝑈halo, 𝑈) → min(𝑈halo, 𝑈)
, (14)

where min(𝑈halo, 𝑈) and max(𝑈halo, 𝑈) are the minimum and
maximum values found in the dataset for the component 𝑉 of
the 𝑈halo vector, ensuring that, for each component, the values
of 𝐿𝑈 are contained between 0 and 1. The input layer uses
12 features, corresponding to the components of the 𝐿 vector,
and uses a scaled exponential linear unit (SELU) activation
function. It is followed by two fully-connected hidden layers,
each with 32 features, and also using a SELU activation func-
tion !. The output layer contains 8 features, corresponding to
the components of the 𝑈gas vector, and uses a sigmoid acti-
vation function. This means that the network produces raw
outputs 𝑊 that are bounded between 0 and 1; these outputs are
then linearly rescaled:

𝑈gas, 𝑈 = 𝑊𝑈 ↓
[
𝑈

max
gas, 𝑈 → 𝑈

min
gas, 𝑈

]
+ 𝑈

min
gas, 𝑈 , (15)

where the minimum and maximum values for each parameters
are reported in table 1. This is equivalent to setting soft bounds
on the parameters of the gas model, where the bounds are fixed
a priori to ensure a large parameter range while avoiding values
resulting in numerical errors (e.g. ε0 = 1). We emphasize
that, as noted in §2.1, for the baseline model, we fix 𝑁𝑉 = 0,
meaning the polytropic index of the gas is kept constant with
radius; we explore models with 𝑁𝑉 ↗ (→1, 1) in §6.5.

4.3. Forward modeling of gas properties

The training of the model is based on comparing the gas
properties predicted by picasso for a gravity-only halo with
those of counterparts in a matched hydrodynamic simulation.
For each halo, the input vector 𝑈halo is used to predict 𝑈gas
as described in §4.2. The predicted parameter vector is then
used in eqs. (1–6), along with the gravity-only potential pro-
file 𝑋GO (𝑌), to compute the radial profiles of thermodynamic
properties 𝑍 :

𝑍1 = �̃�g ; 𝑍2 = �̃�tot ; 𝑍3 = 𝑐nt ; 𝑍4 = �̃�th, (16)

! Di!erent alternatives were tested, using deeper and wider architectures, as
well as di!erent activation functions; all resulting in similar results. Shallower
and narrower networks were also investigated, yielding slightly worse accu-
racy, thus we chose the simplest architecture that achieved the best observed
performance.

◦ Baseline model: Full input vector 
All halo properties used to make predictions 

◦ Results: for the training range ,


• Few-% accuracy on main property of interest 


• ~20% scatter similar to “pasting” methods (FK+23)

(r ∈ [0.1, 2] × R500c)

(Pth)
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10�1 100

r/R500c

P̃th

baseline: µ = 0.996, � = 0.273
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◦ Compact & Minimal models: Smaller input vectors 

• Compact: No mass assembly history


• Minimal:  only


◦ Results: 

• Compact: same bias / almost same scatter


• Minimal: almost same bias / larger scatter


→ Promising: can be used from limited inputs

(M200c, c200c)
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Compact / minimal model results
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log10 (𝐿200𝐿/1014 𝑀→1𝐿↑ ) (log-scaled) Halo mass ↭ ↭
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ω𝑂/𝑃200𝐿 Normalized o!set between center of mass and potential peak ↭ ↓
𝑁acc./𝑁200𝐿 Ratio between accumulated mass and NFW fit concentrations ↭ ↓
𝑁peak/𝑁200𝐿 Ratio between di!erential mass profile peak and NFW fit concentrations ↭ ↓

𝑄 Halo ellipticity, eq. (13) ↭ ↓
𝑅 Halo prolaticity, eq. (13) ↭ ↓

𝑆lmm Scale factor of last major merger ↓ ↓
𝑆25 Scale factor at which 𝐿 = 0.25 ↓ 𝐿𝑀=0 ↓ ↓
𝑆50 Scale factor at which 𝐿 = 0.50 ↓ 𝐿𝑀=0 ↓ ↓
𝑆75 Scale factor at which 𝐿 = 0.75 ↓ 𝐿𝑀=0 ↓ ↓
↔𝐿 Mass accretion rate between last two redshift snapshots ↓ ↓

TABLE 2
Description of the components of the 𝑇halo parameter vector used in the baseline model presented in §4. The last two columns denote whether the properties are

included in the compact (second rightmost) and minimal (rightmost) models, presented in §6.2 and §6.3, respectively.

• Disturbance: we use three indicators known to contain in-
formation on the relaxation state of halos. (a) the normal-
ized o!set between the center of mass and potential peak
ω𝐿/𝑀200𝑁; (b) the ratio between concentration measured
from the accumulated mass profile and an NFW fitting,
𝑁acc./𝑁200𝑁; (c) the ratio between concentration measured
from the di!erential mass profile peak and NFW fitting,
𝑁peak/𝑁200𝑁. More details on these indicators in the context
of HACC simulations can be found in Child et al. (2018), §3.

• Halo shape: We use halo ellipticity, measuring a halo’s
deviation from sphericity, and prolaticity, quantifying the
extent to which a halo is oblate (disk-shaped) or prolate
(cigar-shaped). They are defined through the halo’s semi-
axes 𝑂, 𝑃, 𝑁, where 𝑂 ↫ 𝑃 ↫ 𝑁 > 0, as:

𝑄 =
1

2𝑅

(
1 → (𝑁/𝑂)2

)
;

𝑆 =
1

2𝑅

(
1 → 2(𝑃/𝑂)2 + (𝑁/𝑂)2

)
, (13)

where 𝑅 = 1+(𝑃/𝑂)2+(𝑁/𝑂)2. For a given halo, 𝑄 ranges be-
tween 0 (spherical) and 1/2 (non-spherical), and 𝑆 between
→𝑄 (oblate) and 𝑄 (prolate). The semi-axes are computed
from the eigenvalues of the reduced inertia tensor of the
halo particles (e.g. Allgood et al. 2006; Lau et al. 2021).

• Mass assembly history: we use the scale factors
(𝑂25, 𝑂50, 𝑂75) at which the halo has achieved 25%, 50%
and 75% of its final mass, respectively; as well as the instan-
teous mass accretion rate of the halos, ↔𝑇 , between the last
two redshift snapshots of the simulation, and the scale factor
at the last major merger, 𝑂lmm, defined as the scale factor of
the Universe when a given halo underwent its last merger
with mass ratios greater than 0.3.

A summary of the notations and definitions for the components
of 𝑈halo can be found in table 2. Alternative models, relying
on input vectors containing subsets of these properties, will be
discussed in §6.

4.2. Neural network architecture

As mentioned in §2.2, we use a machine learning model to
make predictions for the parameter vector 𝑈gas from 𝑈halo.
Specifically, for the baseline model, we choose a fully-
connected neural network. First, the input vector 𝐿 is defined

as a linear rescaling of 𝑈halo: for each feature 𝑉,

𝐿𝑈 =
𝑈halo, 𝑈 → min(𝑈halo, 𝑈)

max(𝑈halo, 𝑈) → min(𝑈halo, 𝑈)
, (14)

where min(𝑈halo, 𝑈) and max(𝑈halo, 𝑈) are the minimum and
maximum values found in the dataset for the component 𝑉 of
the 𝑈halo vector, ensuring that, for each component, the values
of 𝐿𝑈 are contained between 0 and 1. The input layer uses
12 features, corresponding to the components of the 𝐿 vector,
and uses a scaled exponential linear unit (SELU) activation
function. It is followed by two fully-connected hidden layers,
each with 32 features, and also using a SELU activation func-
tion !. The output layer contains 8 features, corresponding to
the components of the 𝑈gas vector, and uses a sigmoid acti-
vation function. This means that the network produces raw
outputs 𝑊 that are bounded between 0 and 1; these outputs are
then linearly rescaled:

𝑈gas, 𝑈 = 𝑊𝑈 ↓
[
𝑈

max
gas, 𝑈 → 𝑈

min
gas, 𝑈

]
+ 𝑈

min
gas, 𝑈 , (15)

where the minimum and maximum values for each parameters
are reported in table 1. This is equivalent to setting soft bounds
on the parameters of the gas model, where the bounds are fixed
a priori to ensure a large parameter range while avoiding values
resulting in numerical errors (e.g. ε0 = 1). We emphasize
that, as noted in §2.1, for the baseline model, we fix 𝑁𝑉 = 0,
meaning the polytropic index of the gas is kept constant with
radius; we explore models with 𝑁𝑉 ↗ (→1, 1) in §6.5.

4.3. Forward modeling of gas properties

The training of the model is based on comparing the gas
properties predicted by picasso for a gravity-only halo with
those of counterparts in a matched hydrodynamic simulation.
For each halo, the input vector 𝑈halo is used to predict 𝑈gas
as described in §4.2. The predicted parameter vector is then
used in eqs. (1–6), along with the gravity-only potential pro-
file 𝑋GO (𝑌), to compute the radial profiles of thermodynamic
properties 𝑍 :

𝑍1 = �̃�g ; 𝑍2 = �̃�tot ; 𝑍3 = 𝑐nt ; 𝑍4 = �̃�th, (16)

! Di!erent alternatives were tested, using deeper and wider architectures, as
well as di!erent activation functions; all resulting in similar results. Shallower
and narrower networks were also investigated, yielding slightly worse accu-
racy, thus we chose the simplest architecture that achieved the best observed
performance.
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radius; we explore models with 𝑁𝑉 ↗ (→1, 1) in §6.5.

4.3. Forward modeling of gas properties

The training of the model is based on comparing the gas
properties predicted by picasso for a gravity-only halo with
those of counterparts in a matched hydrodynamic simulation.
For each halo, the input vector 𝑈halo is used to predict 𝑈gas
as described in §4.2. The predicted parameter vector is then
used in eqs. (1–6), along with the gravity-only potential pro-
file 𝑋GO (𝑌), to compute the radial profiles of thermodynamic
properties 𝑍 :

𝑍1 = �̃�g ; 𝑍2 = �̃�tot ; 𝑍3 = 𝑐nt ; 𝑍4 = �̃�th, (16)

! Di!erent alternatives were tested, using deeper and wider architectures, as
well as di!erent activation functions; all resulting in similar results. Shallower
and narrower networks were also investigated, yielding slightly worse accu-
racy, thus we chose the simplest architecture that achieved the best observed
performance.

Testing set: halos not seen in training

Thermal pressure
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◦ “Baryon pasting” (As implemented in FK+23) 

• Fully analytical prescription


• Gas density + thermal pressure


• CPU-only


• Few %-level accuracy, 20% precision


• Prediction time: 711 ms/halo

7

Computational performance assessment
Introduction  Gas model Performance Application Conclusions

◦ picasso 

• Parametric model + ML


• Gas density + pressure + non-therm. pressure


• CPU+GPU


• Few %-level accuracy, 20% precision


• Prediction time: 61 µs/halo

picasso: Same accuracy and precision, 104x faster 

→ Painting on 1,000,000 halos: 20 h → 1 min

Comparing two painting algorithms on the same problem: painting on potential distribution 3D grid (643 cells)
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◦ The Last Journey simulation (Heitmann+21): 

• 


•  particles 


• Planck 2018 cosmology


◦ Lightcone: 

• Full lightcone without repetitions up to 


• Full particle output for 

(3.4 Gpc/h)3

≳ 1012 (m ∼ 3 × 109 M⊙/h)

z = 2

M200c > 1013 M⊙/h

8

Application: picasso-TLJ
Introduction  Gas model Performance Application Conclusions

2 The Last Journey. I.

FIG. 1.— Visualization of the Last Journey simulation. Shown are thin density slices for the full box (lower left corner) and zoom-ins at different levels. The
panel on the lower right focuses on the largest cluster in the simulation with a mass of ⇠ 6 ·1015

h
-1M�.

(ALCF). Mira, a 10PFlop system, belongs to the family of IBM
BG/Q supercomputers and went into production in 2012. The
machine was retired early in 2020, and the Last Journey simu-
lation was its final full-machine run. The simulation was per-
formed with HACC, described in detail in Habib et al. (2016).
The HACC framework has run very successfully on the BG/Q
architecture; the Gordon Bell finalist paper in 2012 (Habib et
al. 2012) describes achieving a sustained performance of close
to 14PFlops on Sequoia, another large BG/Q system.

The Outer Rim simulation was one of the first extreme-scale
simulations run on Mira, evolving more than a trillion parti-
cles and employing two-thirds of the machine. In this context,
“extreme-scale" refers to those simulations that occupy a major
fraction of a system that is among the largest supercomputers
worldwide. Experience with the Outer Rim led to many opti-
mizations in the HACC framework. These optimizations were
applied to I/O strategies, memory management, time stepping,
and improved analysis tools. In the end, essentially every part

of the code was touched and enhanced in some way. For the
Last Journey run, we focused on a few additional improvements
to the analysis suite. Given that Mira was on the floor for only a
few more months with limited storage space availability, most
of the analysis had to be carried out in situ, while the code was
running on the system. This approach avoids having to store
petabytes of data on the file system and also saves I/O time.
In particular, we focused on speeding up the halo center find-
ing algorithm, generating light-cone particle files in situ, and
adding a range of halo properties to the output that were not
measured for the Outer Rim simulation. We sought input from
the LSST Dark Energy Science Collaboration (DESC) working
groups and others to enable as many science projects related to
major surveys as possible.

Over the years, we have developed a customized approach to
the analysis that accompanies HACC simulations to ensure high
performance and excellent scalability of our in situ tools. Our
parallel analysis tool suite, called CosmoTools, takes advantage

Heitmann+21
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Full-sky (z < 0.5)
9

picasso-TLJ: tSZ map
Introduction  Gas model Performance Application Conclusions
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Zoom on 100 deg2

9

picasso-TLJ: tSZ map
Introduction  Gas model Performance Application Conclusions
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Zoom on 100 deg2

9

picasso-TLJ: tSZ map
Introduction  Gas model Performance Application Conclusions
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Zoom on 4 deg2

9

picasso-TLJ: tSZ map
Introduction  Gas model Performance Application Conclusions
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Zoom on 1 deg2

9

picasso-TLJ: tSZ map
Introduction  Gas model Performance Application Conclusions
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◦ CIB: diffuse far-IR radiation from dusty star forming galaxies 

◦ Faint signal in CMB maps that can contaminate SZ measurements and Compton-y maps.  

◦ Incorrect tSZ measurements due to CIB contamination could lead us to incorrect estimates for the temperature and density of halos.

10

Beyond tSZ: Cosmic infrared background
Introduction  Gas model Performance Application Conclusions

Maya Mallaby-Kay

Giulia Campitiello

→ Impact of CIB on SZ detection studies
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◦ Radio galaxies hosted in cluster halos can contaminate cluster detections. 

◦ Model their contribution using the luminosity functions from Massardi et al. 2010


• Separately describe flat- and steep-spectrum sources, to predict their abundance. 


◦ Convert the 1.4 GHz luminosities into fluxes at SPT frequencies.

11

Beyond tSZ: Radio sources
Introduction  Gas model Performance Application Conclusions

Giulia Campitiello

→ Impact of radio sources on 
SZ detection studies
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Introduction  Gas model Performance Application Conclusions

12

Beyond tSZ: Last Journey lensing maps

◦ Ray-traced lensing maps for the full lightcone: Full sky up to , using the full particle distribution (not just halos)z ∼ 10

→ tSZ x lensing studies

Lensing

Patricia Larsen

tSZ (picasso-TLJ)
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◦ New physics-informed, AI/ML-powered gas model 

• Fast, GPU-enabled, differentiable 

• Flexible: trained model can be used on a variety of inputs


◦ Accurate / precise predictions of intracluster gas thermodynamics


◦ Model availability: 

• Available on GitHub, including trained models


• Documentation available online, including tutorials


◦ Application: 

• tSZ-painting the Last Journey simulation


• Halo-particle-based tSZ on full lightcone 

• Parallel efforts to include other mm-wave x-gal components


• Calibration of SPT-3G cluster cosmology: 

- Cluster detection (see talks by L. Bleem, K. Kornoelje)


- Cluster clustering (see talk by E. Martsen)


- Cluster count cosmology (see talk by S. Bocquet)

13

Conclusions
Introduction  Gas model Performance Application Conclusions

https://picasso-cosmo.readthedocs.io/en/latest/


Florian Kéruzoré — mmUniverse 2025

◦ New physics-informed, AI/ML-powered gas model 

• Fast, GPU-enabled, differentiable 

• Flexible: trained model can be used on a variety of inputs


◦ Accurate / precise predictions of intracluster gas thermodynamics


◦ Model availability: 

• Available on GitHub, including trained models


• Documentation available online, including tutorials


◦ Application: 

• tSZ-painting the Last Journey simulation


• Halo-particle-based tSZ on full lightcone 

• Parallel efforts to include other mm-wave x-gal components


• Calibration of SPT-3G cluster cosmology: 

- Cluster detection (see talks by L. Bleem, K. Kornoelje)


- Cluster clustering (see talk by E. Martsen)


- Cluster count cosmology (see talk by S. Bocquet)

13

Conclusions
Introduction  Gas model Performance Application Conclusions

https://picasso-cosmo.readthedocs.io/en/latest/


• Paper: Kéruzoré et al. (2024), OJAp 7, arXiv:2408.17445 

• picasso Github: fkeruzore/picasso 

• picasso documentation: picasso-cosmo.readthedocs.io 

Thank you!

https://arxiv.org/abs/2408.17445
https://github.com/fkeruzore/picasso
http://picasso-cosmo.readthedocs.io
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Combines a parametric gas model with ML predicting model parameters

16

The picasso model workflow

Inputs Outputs

Model computations

Halo properties vector
ϑhalo

Gas parameters vector
ϑgas

Halo potential distribution
(r, ϕ(r))

Gas model

(ρg, Ptot) = f(ϕ, r | ϑgas)
fnt = f(r | ϑgas)

→ Pth = f(ϕ, r | ϑgas)

Thermodynamic properties
(ρg, Ptot, fnt, Pth)

Combines a parametric gas model with ML predicting model parameters

Inputs Outputs

Model computations

Halo properties vector
ϑhalo

Gas parameters vector
ϑgas

Halo potential distribution
(r, ϕ(r))

Gas model

(ρg, Ptot) = f(ϕ, r | ϑgas)
fnt = f(r | ϑgas)

→ Pth = f(ϕ, r | ϑgas)

Thermodynamic properties
(ρg, Ptot, fnt, Pth)
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Gas density:   Total pressure:  ; Non-thermal pressure fraction:   

→ Model with 8 parameters, 

ρ(ϕ) = ρ0θΓ/(Γ−1)(ϕ); P(ϕ) = P0θ1/(Γ−1)(ϕ) fnt(r) = Ant + (Bnt − Ant)(r/R200m)Cnt

ϑgas

17

The picasso model workflow: Parametric gas model

Inputs Outputs

Model computations

Halo properties vector
ϑhalo

Gas parameters vector
ϑgas

Halo potential distribution
(r, ϕ(r))

Gas model

(ρg, Ptot) = f(ϕ, r | ϑgas)
fnt = f(r | ϑgas)

→ Pth = f(ϕ, r | ϑgas)

Thermodynamic properties
(ρg, Ptot, fnt, Pth)

Can be any sampling: 

profiles, grids, particles, …
Same sampling as the input potential

Inputs Outputs

Model computations

Halo properties vector
ϑhalo

Gas parameters vector
ϑgas

Halo potential distribution
(r, ϕ(r))

Gas model

(ρg, Ptot) = f(ϕ, r | ϑgas)
fnt = f(r | ϑgas)

→ Pth = f(ϕ, r | ϑgas)

Thermodynamic properties
(ρg, Ptot, fnt, Pth)

Symbol Meaning Range

log10 𝐿0 (log-scaled) Central normalized gas density
log10 𝑀0 (log-scaled) Central normalized gas total pressure

ω0 Gas polytropic index limit as 𝑁 → ↑
𝑂𝐿 Gas polytropic index shape parameter

𝑃0/(10↓6 km2s↓2 ) Polytropic normalization
log10 𝑄nt (log-scaled) Central plateau of non-thermal pressure fraction
log10 𝑅nt (log-scaled) Non-thermal pressure fraction at 𝑁 = 2𝑆500𝑀 (

𝑇nt Non-thermal pressure fraction profile power law index
a (↓1, 1) for the NR+ω (𝑁 ) and SG+ω (𝑁 ) models; see §6.5.
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The picasso model workflow: Parametric gas model
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Gas density

Total pressure

Non-thermal 
pressure fraction

Thermal pressure

High parameter 
value

Low parameter 
value

       log ρ0 log P0 Γ0 cγ θ0 log Ant log Bnt Cnt

Gas density:   Total pressure:  ; Non-thermal pressure fraction:   

→ Model with 8 parameters, 

ρ(ϕ) = ρ0θΓ/(Γ−1)(ϕ); P(ϕ) = P0θ1/(Γ−1)(ϕ) fnt(r) = Ant + (Bnt − Ant)(r/R200m)Cnt

ϑgas
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The picasso model workflow: ML predictor

Inputs Outputs

Model computations

Halo properties vector
ϑhalo

Gas parameters vector
ϑgas

Halo potential distribution
(r, ϕ(r))

Gas model

(ρg, Ptot) = f(ϕ, r | ϑgas)
fnt = f(r | ϑgas)

→ Pth = f(ϕ, r | ϑgas)

Thermodynamic properties
(ρg, Ptot, fnt, Pth)

The picasso gas model 7

Symbol Meaning Compact? Minimal?

log10 (𝐿200𝐿/1014 𝑀→1𝐿↑ ) (log-scaled) Halo mass ↭ ↭
𝑁200𝐿 Halo concentration ↭ ↭

ω𝑂/𝑃200𝐿 Normalized o!set between center of mass and potential peak ↭ ↓
𝑁acc./𝑁200𝐿 Ratio between accumulated mass and NFW fit concentrations ↭ ↓
𝑁peak/𝑁200𝐿 Ratio between di!erential mass profile peak and NFW fit concentrations ↭ ↓

𝑄 Halo ellipticity, eq. (13) ↭ ↓
𝑅 Halo prolaticity, eq. (13) ↭ ↓

𝑆lmm Scale factor of last major merger ↓ ↓
𝑆25 Scale factor at which 𝐿 = 0.25 ↓ 𝐿𝑀=0 ↓ ↓
𝑆50 Scale factor at which 𝐿 = 0.50 ↓ 𝐿𝑀=0 ↓ ↓
𝑆75 Scale factor at which 𝐿 = 0.75 ↓ 𝐿𝑀=0 ↓ ↓
↔𝐿 Mass accretion rate between last two redshift snapshots ↓ ↓

TABLE 2
Description of the components of the 𝑇halo parameter vector used in the baseline model presented in §4. The last two columns denote whether the properties are

included in the compact (second rightmost) and minimal (rightmost) models, presented in §6.2 and §6.3, respectively.

• Disturbance: we use three indicators known to contain in-
formation on the relaxation state of halos. (a) the normal-
ized o!set between the center of mass and potential peak
ω𝐿/𝑀200𝑁; (b) the ratio between concentration measured
from the accumulated mass profile and an NFW fitting,
𝑁acc./𝑁200𝑁; (c) the ratio between concentration measured
from the di!erential mass profile peak and NFW fitting,
𝑁peak/𝑁200𝑁. More details on these indicators in the context
of HACC simulations can be found in Child et al. (2018), §3.

• Halo shape: We use halo ellipticity, measuring a halo’s
deviation from sphericity, and prolaticity, quantifying the
extent to which a halo is oblate (disk-shaped) or prolate
(cigar-shaped). They are defined through the halo’s semi-
axes 𝑂, 𝑃, 𝑁, where 𝑂 ↫ 𝑃 ↫ 𝑁 > 0, as:

𝑄 =
1

2𝑅

(
1 → (𝑁/𝑂)2

)
;

𝑆 =
1

2𝑅

(
1 → 2(𝑃/𝑂)2 + (𝑁/𝑂)2

)
, (13)

where 𝑅 = 1+(𝑃/𝑂)2+(𝑁/𝑂)2. For a given halo, 𝑄 ranges be-
tween 0 (spherical) and 1/2 (non-spherical), and 𝑆 between
→𝑄 (oblate) and 𝑄 (prolate). The semi-axes are computed
from the eigenvalues of the reduced inertia tensor of the
halo particles (e.g. Allgood et al. 2006; Lau et al. 2021).

• Mass assembly history: we use the scale factors
(𝑂25, 𝑂50, 𝑂75) at which the halo has achieved 25%, 50%
and 75% of its final mass, respectively; as well as the instan-
teous mass accretion rate of the halos, ↔𝑇 , between the last
two redshift snapshots of the simulation, and the scale factor
at the last major merger, 𝑂lmm, defined as the scale factor of
the Universe when a given halo underwent its last merger
with mass ratios greater than 0.3.

A summary of the notations and definitions for the components
of 𝑈halo can be found in table 2. Alternative models, relying
on input vectors containing subsets of these properties, will be
discussed in §6.

4.2. Neural network architecture

As mentioned in §2.2, we use a machine learning model to
make predictions for the parameter vector 𝑈gas from 𝑈halo.
Specifically, for the baseline model, we choose a fully-
connected neural network. First, the input vector 𝐿 is defined

as a linear rescaling of 𝑈halo: for each feature 𝑉,

𝐿𝑈 =
𝑈halo, 𝑈 → min(𝑈halo, 𝑈)

max(𝑈halo, 𝑈) → min(𝑈halo, 𝑈)
, (14)

where min(𝑈halo, 𝑈) and max(𝑈halo, 𝑈) are the minimum and
maximum values found in the dataset for the component 𝑉 of
the 𝑈halo vector, ensuring that, for each component, the values
of 𝐿𝑈 are contained between 0 and 1. The input layer uses
12 features, corresponding to the components of the 𝐿 vector,
and uses a scaled exponential linear unit (SELU) activation
function. It is followed by two fully-connected hidden layers,
each with 32 features, and also using a SELU activation func-
tion !. The output layer contains 8 features, corresponding to
the components of the 𝑈gas vector, and uses a sigmoid acti-
vation function. This means that the network produces raw
outputs 𝑊 that are bounded between 0 and 1; these outputs are
then linearly rescaled:

𝑈gas, 𝑈 = 𝑊𝑈 ↓
[
𝑈

max
gas, 𝑈 → 𝑈

min
gas, 𝑈

]
+ 𝑈

min
gas, 𝑈 , (15)

where the minimum and maximum values for each parameters
are reported in table 1. This is equivalent to setting soft bounds
on the parameters of the gas model, where the bounds are fixed
a priori to ensure a large parameter range while avoiding values
resulting in numerical errors (e.g. ε0 = 1). We emphasize
that, as noted in §2.1, for the baseline model, we fix 𝑁𝑉 = 0,
meaning the polytropic index of the gas is kept constant with
radius; we explore models with 𝑁𝑉 ↗ (→1, 1) in §6.5.

4.3. Forward modeling of gas properties

The training of the model is based on comparing the gas
properties predicted by picasso for a gravity-only halo with
those of counterparts in a matched hydrodynamic simulation.
For each halo, the input vector 𝑈halo is used to predict 𝑈gas
as described in §4.2. The predicted parameter vector is then
used in eqs. (1–6), along with the gravity-only potential pro-
file 𝑋GO (𝑌), to compute the radial profiles of thermodynamic
properties 𝑍 :

𝑍1 = �̃�g ; 𝑍2 = �̃�tot ; 𝑍3 = 𝑐nt ; 𝑍4 = �̃�th, (16)

! Di!erent alternatives were tested, using deeper and wider architectures, as
well as di!erent activation functions; all resulting in similar results. Shallower
and narrower networks were also investigated, yielding slightly worse accu-
racy, thus we chose the simplest architecture that achieved the best observed
performance.

Mass / concentration

Disturbance state

Morphology

Mass assembly history

Inputs Outputs

Model computations

Halo properties vector
ϑhalo

Gas parameters vector
ϑgas

Halo potential distribution
(r, ϕ(r))

Gas model

(ρg, Ptot) = f(ϕ, r | ϑgas)
fnt = f(r | ϑgas)

→ Pth = f(ϕ, r | ϑgas)

Thermodynamic properties
(ρg, Ptot, fnt, Pth)

◦ Parameters  predicted: 

• Per halo


• By a neural network


• Inputs = halo properties

ϑgas
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Inputs Outputs

Model computations

Halo properties vector
ϑhalo

Gas parameters vector
ϑgas

Halo G-O potential distribution
(r, ϕ(r))

Gas model

(ρg, Ptot) = f(ϕ, r | ϑgas)
fnt = f(r | ϑgas)

→ Pth = f(ϕ, r | ϑgas)

Predicted thermodynamics
(ρg, Ptot, fnt, Pth)

Target halo thermodynamics
(ρg, Ptot, fnt, Pth)

Loss function

Model training: Workflow
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Inputs Outputs

Model computations

Halo properties vector
ϑhalo

Gas parameters vector
ϑgas

Halo G-O potential distribution
(r, ϕ(r))

Gas model

(ρg, Ptot) = f(ϕ, r | ϑgas)
fnt = f(r | ϑgas)

→ Pth = f(ϕ, r | ϑgas)

Predicted thermodynamics
(ρg, Ptot, fnt, Pth)

Target halo thermodynamics
(ρg, Ptot, fnt, Pth)

Loss function

∑
halos

∑
ρg, Ptot, fnt, Pth

pred − target
target

Model training: Workflow
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Inputs Outputs

Model computations

Halo properties vector
ϑhalo

Gas parameters vector
ϑgas

Halo G-O potential distribution
(r, ϕ(r))

Gas model

(ρg, Ptot) = f(ϕ, r | ϑgas)
fnt = f(r | ϑgas)

→ Pth = f(ϕ, r | ϑgas)

Predicted thermodynamics
(ρg, Ptot, fnt, Pth)

Target halo thermodynamics
(ρg, Ptot, fnt, Pth)

Loss function

Train network to 

minimize loss

∑
halos

∑
ρg, Ptot, fnt, Pth

pred − target
target

Model training: Workflow

• Loss function fully differentiable


→ Compute gradients w.r.t. neural 
network parameters, and optimize
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◦ We train using profiles, but learn the mapping between G-O halo potential and gas properties 

◦ Once trained, picasso can predict gas properties for any potential distribution: profiles, particles, 3D grids, … 

◦ tSZ maps comparison: 

• From gas particles in hydrodynamic simulation vs. from G-O simulation particles with trained picasso


• Amplitude and shape of the tSZ signal well reproduced, including some subhalo structure

21

picasso is not a spherical model!

Hydro picasso

Hydro picasso

Hydro picasso

Hydro picasso



Florian Kéruzoré — mmUniverse 2025

10�1 100

r/R500c

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

p
i
c
a
s
s
o

pr
ed

ic
tio

ns
/

ta
rg

et

⇢̃g

baseline: µ = 0.984, � = 0.244
subgrid: µ = 0.975, � = 0.277

10�1 100

r/R500c

P̃tot

baseline: µ = 0.970, � = 0.259
subgrid: µ = 0.974, � = 0.284

10�1 100

r/R500c

P̃th

baseline: µ = 0.996, � = 0.273
subgrid: µ = 0.996, � = 0.299

10�1 100

r/R500c

fnt

baseline: µ = 0.911, � = 0.425
subgrid: µ = 0.929, � = 0.394

◦ Subgrid model: 

• Train on full-physics hydrodynamic simulation 

- Sub-resolution baryonic physics affect large scale matter distribution & cluster properties


- Empirically modelled, including AGN & SN feedback, cooling, star formation, winds


• Full (baseline) input vector


◦ Results: 

• Bias slightly worse and not constant with radius (still few-% at )


• Scatter slightly degraded


→ Promising! But further model investigation required

r > 0.2R500c

22

Subgrid model results

Testing set: halos not seen in training

Thermal pressure
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• Models presented before fixed 


• Allowing  does not change results significantly 

cγ = 0 ⇒ Γ(r) = Γ0

cγ ≠ 0

23

1.10

1.15

1.20

�
(r
|�

0
=

1.
15

0,
c �

)

10�1 100

r/R500c

1.10

1.15

1.20

1.25

1.30

�
(r
|�

0
=

1.
20

0,
c �

)

�1.0

�0.5

0.0

0.5

1.0

c �

Fixed vs. radius-varying polytropic index



Florian Kéruzoré — mmUniverse 2025

• Models presented before fixed 


• Allowing  does not change results significantly 

cγ = 0 ⇒ Γ(r) = Γ0

cγ ≠ 0
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NR + �(r): µ = 0.998, � = 0.264
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baseline: µ = 0.911, � = 0.425
NR + �(r): µ = 0.916, � = 0.427
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SG + �(r): µ = 0.923, � = 0.389

Fixed vs. radius-varying polytropic index
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• Use model trained at  to predict properties at z = 0 z = 0.5
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z>0
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