

Picasso Painting intra-cluster gas on gravity-only simulations **Model and first data products**

Florian Kéruzoré

Argonne National Laboratory

mmUniverse 2025 — June 26th, 2025

Gas model

- tSZ-selected cluster samples = powerful cosmological probe See previous 24 cluster talks
- Synthetic datasets needed for cluster cosmology See previous 6 simulation talks
 - Using cosmological simulations
 - Two categories:
 - Hydrodynamic (include baryonic physics, but slow and uncertain)
 - Gravity-only / G-O (fast, but no baryons) -
- Need post-processing to "paint" observables on G-O
 - In particular intracluster gas for SZ effects @ mm wavelengths

Florian Kéruzoré — mmUniverse 2025

Performance

Context

Gas model

The picasso gas model

- ML-powered model to "paint" gas on gravity-only halos
- Combines:
 - A parametric gas model: *thermodynamics* = *f*(*potential* | *parameters*)
 - A neural network predicting model parameters

Gas model

The picasso gas model

- ML-powered model to "paint" gas on gravity-only halos
- Combines:
 - A parametric gas model: *thermodynamics* = *f*(*potential* | *parameters*)
 - A neural network predicting model parameters

Gas model

The picasso gas model

- ML-powered model to "paint" gas on gravity-only halos
- Combines:
 - A parametric gas model: *thermodynamics* = *f*(*potential* | *parameters*)
 - A neural network predicting model parameters

Gas model

The picasso gas model

- ML-powered model to "paint" gas on gravity-only halos
- Combines:
 - A parametric gas model: *thermodynamics* = *f*(*potential* | *parameters*)
 - A neural network predicting model parameters
- Trained on pairs of gravity-only / hydrodynamic simulations
- Fast, GPU-accelerated, differentiable (JAX)
- Publicly available & documented

Gas model

Model training: Simulation pairs

- **Training simulation:** 0
 - 576 Mpc/h, $\gtrsim 10^{10}$ particles
 - Baryon mass resolution: $2 \times 10^8 M_{\odot}/h$
- Two runs from same initial conditions: 0
 - Gravity-only
 - Hydrodynamic
- Same initial conditions \rightarrow Same halos! 0
- Target data: Gas properties of hydro halos
 - For each G-O halo, find hydro counterpart
 - Target = counterpart gas properties

Gas model

Model training: Simulation pairs

- **Training simulation:** 0
 - 576 Mpc/h, $\gtrsim 10^{10}$ particles
 - Baryon mass resolution: $2 \times 10^8 M_{\odot}/h$
- Two runs from same initial conditions: 0
 - Gravity-only
 - Hydrodynamic
- Same initial conditions \rightarrow Same halos! 0
- Target data: Gas properties of hydro halos
 - For each G-O halo, find hydro counterpart
 - Target = counterpart gas properties

Gas model

Model training: Simulation pairs

- **Training simulation:** 0
 - 576 Mpc/h, $\gtrsim 10^{10}$ particles
 - Baryon mass resolution: $2 \times 10^8 M_{\odot}/h$
- Two runs from same initial conditions: 0
 - Gravity-only
 - Hydrodynamic
- Same initial conditions \rightarrow Same halos! 0
- Target data: Gas properties of hydro halos
 - For each G-O halo, find hydro counterpart
 - Target = counterpart gas properties

Gas model

• Baseline model: Full input vector All halo properties used to make predictions

- **Results:** for the training range $(r \in [0.1, 2] \times R_{500c})$,
 - **Few-% accuracy** on main property of interest (P_{th})
 - ~20% scatter similar to "pasting" methods (FK+23) •

Baseline model results

Symbol	Meaning	
$\frac{\log_{10}(M_{200c}/10^{14} h^{-1} M_{\odot})}{c_{200c}}$	(log-scaled) Halo mass Halo concentration	
$\frac{\Delta x/R_{200c}}{c_{\rm acc.}/c_{200c}}$ $\frac{c_{\rm peak}/c_{200c}}{c_{\rm peak}/c_{200c}}$	Normalized offset between center of mass and potential peak Ratio between accumulated mass and NFW fit concentrations Ratio between differential mass profile peak and NFW fit concentrations	
e p	Halo ellipticity, eq. (13) Halo prolaticity, eq. (13)	
$a_{ m lmm}$ $a_{ m 25}$ $a_{ m 50}$ $a_{ m 75}$ \dot{M}	Scale factor of last major merger Scale factor at which $M = 0.25 \times M_{z=0}$ Scale factor at which $M = 0.50 \times M_{z=0}$ Scale factor at which $M = 0.75 \times M_{z=0}$ Mass accretion rate between last two redshift snapshots	

Gas model

Compact / minimal model results

- Compact & Minimal models: Smaller input vectors
 - **Compact:** No mass assembly history
 - Minimal: (M_{200c}, c_{200c}) only
- **Results**:
 - **Compact:** same bias / almost same scatter
 - Minimal: almost same bias / larger scatter
 - \rightarrow Promising: can be used from limited inputs

Symbol	Compact?	Minimal?
$\log_{10}(M_{200c}/10^{14} h^{-1} M_{\odot})$	\checkmark	\checkmark
c_{200c}	\checkmark	\checkmark
$\Delta x/R_{200c}$	\checkmark	×
$c_{\rm acc.}/c_{200c}$	\checkmark	×
$c_{\rm peak}/c_{200c}$	\checkmark	×
e	\checkmark	×
p	\checkmark	×
$a_{ m lmm}$	×	×
a_{25}	×	×
a_{50}	×	×
a_{75}	×	×
\dot{M}	×	×

Thermal pressure

Gas model

Computational performance assessment

- **"Baryon pasting"** (As implemented in FK+23)
 - Fully analytical prescription
 - Gas density + thermal pressure
 - CPU-only
 - Few %-level accuracy, 20% precision
 - Prediction time: 711 ms/halo

 \rightarrow Painting on 1,000,000 halos: 20 h \rightarrow 1 min

Comparing two painting algorithms on the same problem: painting on potential distribution 3D grid (64³ cells)

- o picasso
 - Parametric model + ML
 - Gas density + pressure + non-therm. pressure
 - CPU+GPU
 - Few %-level accuracy, 20% precision
 - Prediction time: 61 µs/halo

picasso: Same accuracy and precision, 10⁴x faster

Gas model

Application: picasso-TLJ

• The Last Journey simulation (Heitmann+21):

- $(3.4 \text{ Gpc}/h)^3$
- $\gtrsim 10^{12}$ particles ($m \sim 3 \times 10^9 M_{\odot}/h$)
- Planck 2018 cosmology

• Lightcone:

- Full lightcone without repetitions up to z = 2
- Full particle output for $M_{200c} > 10^{13} M_{\odot}/h$

Gas model

0

picasso-TLJ: tSZ map

Compton– $y \times 10^6$

5

Full-sky (z < 0.5)

Gas model

Zoom on 100 deg²

Florian Kéruzoré — mmUniverse 2025

picasso-TLJ: tSZ map

	1.0	
_	0.8	
_	0.6	$n y \times 10^{5}$
-	0.4	Comptoi
_	0.2	
	0.0	

Gas model

Florian Kéruzoré — mmUniverse 2025

picasso-TLJ: tSZ map

picasso-TLJ: tSZ map

Florian Kéruzoré — mmUniverse 2025

Zoom on 4 deg²

Gas model

picasso-TLJ: tSZ map

Florian Kéruzoré — mmUniverse 2025

Zoom on 1 deg²

Gas model

Beyond tSZ: Cosmic infrared background

- **CIB:** diffuse far-IR radiation from dusty star forming galaxies
- Faint signal in CMB maps that can **contaminate SZ measurements** and Compton-y maps.
- Incorrect tSZ measurements due to CIB contamination could lead us to incorrect estimates for the temperature and density of halos.

Application

Conclusions

→ Impact of CIB on SZ detection studies

Gas model

Beyond tSZ: Radio sources

- Radio galaxies hosted in cluster halos can contaminate cluster detections.
- Model their contribution using the luminosity functions from Massardi et al. 2010
 - Separately describe flat- and steep-spectrum sources, to predict their abundance.
- Convert the 1.4 GHz luminosities into fluxes at **SPT frequencies.**

Giulia Campitiello

→ Impact of radio sources on SZ detection studies

Gas model

Beyond tSZ: Last Journey lensing maps

Florian Kéruzoré — mmUniverse 2025

Performance

Patricia Larsen

Conclusions

- New physics-informed, AI/ML-powered gas model
 - Fast, GPU-enabled, differentiable
 - Flexible: trained model can be used on a variety of inputs
- Accurate / precise predictions of intracluster gas thermodynamics
- Model availability:
 - Available on GitHub, including trained models
 - Documentation available online, including tutorials

Florian Kéruzoré — mmUniverse 2025

Application

• Application:

- **tSZ-painting** the Last Journey simulation
- Halo-particle-based tSZ on full lightcone
- Parallel efforts to include other mm-wave x-gal components
- Calibration of SPT-3G cluster cosmology:
 - Cluster detection (see talks by L. Bleem, K. Kornoelje)
 - Cluster clustering (see talk by E. Martsen)
 - Cluster count cosmology (see talk by S. Bocquet)

Conclusions

- New physics-informed, AI/ML-powered gas model
 - Fast, GPU-enabled, differentiable
 - Flexible: trained model can be used on a variety of inputs
- Accurate / precise predictions of intracluster gas thermodynamics
- Model availability:
 - Available on GitHub, including trained models
 - Documentation available online, including tutorials

Florian Kéruzoré — mmUniverse 2025

- Application:
 - **tSZ-painting** the Last Journey simulation
 - Halo-particle-based tSZ on full lightcone
 - Parallel efforts to include other mm-wave x-gal components
 - Calibration of SPT-3G cluster cosmology:
 - Cluster detection (see talks by L. Bleem, K. Kornoelje)
 - Cluster clustering (see talk by E. Martsen)
 - Cluster count cosmology (see talk by S. Bocquet)

- Paper: Kéruzoré et al. (2024), OJAp 7, <u>arXiv:2408.17445</u>
- picasso Github: <u>fkeruzore/picasso</u>
- picasso documentation: picasso-cosmo.readthedocs.io

Thank you!

Backup

The picasso model workflow

16

The picasso model workflow: Parametric gas model

Gas density: $\rho(\phi) = \rho_0 \theta^{\Gamma/(\Gamma-1)}(\phi)$; Total pressure: $P(\phi) = P_0 \theta^{1/(\Gamma-1)}(\phi)$; Non-thermal pressure fraction: $f_{\text{nt}}(r) = A_{\text{nt}} + (B_{\text{nt}} - A_{\text{nt}})(r/R_{200m})^{C_{\text{nt}}}$

The picasso model workflow: Parametric gas model

Gas density: $\rho(\phi) = \rho_0 \theta^{\Gamma/(\Gamma-1)}(\phi)$; Total pressure: $P(\phi) = P_0 \theta^{1/(\Gamma-1)}(\phi)$; Non-thermal pressure fraction: $f_{\text{nt}}(r) = A_{\text{nt}} + (B_{\text{nt}} - A_{\text{nt}})(r/R_{200m})^{C_{\text{nt}}}$

Florian Kéruzoré — mmUniverse 2025

The picasso model workflow: ML predictor

Model training: Workflow

Model training: Workflow

Model training: Workflow

picasso is not a spherical model!

- We train using profiles, but learn the mapping between G-O halo potential and gas properties

• tSZ maps comparison:

- Amplitude and shape of the tSZ signal well reproduced, including some subhalo structure

• Once trained, picasso can predict gas properties for any potential distribution: profiles, particles, 3D grids, ...

• From gas particles in hydrodynamic simulation vs. from G-O simulation particles with trained picasso

• Subgrid model:

- Train on full-physics hydrodynamic simulation
 - Sub-resolution baryonic physics affect large scale matter distribution & cluster properties
 - Empirically modelled, including AGN & SN feedback, cooling, star formation, winds
- Full (baseline) input vector

• **Results**:

- Bias slightly worse and not constant with radius (still few-% at $r > 0.2R_{500c}$)
- Scatter slightly degraded

Subgrid model results

Fixed vs. radius-varying polytropic index

- Models presented before fixed $c_{\gamma} = 0 \implies \Gamma(r) = \Gamma_0$
- Allowing $c_{\gamma} \neq 0$ does not change results significantly

Fixed vs. radius-varying polytropic index

- Models presented before fixed $c_{\gamma} = 0 \implies \Gamma(r) = \Gamma_0$
- Allowing $c_{\gamma} \neq 0$ does not change results significantly

• Use model trained at z = 0 to predict properties at z = 0.5

X

z>0

