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CLASS

Cerro Toco as of 2021. M.Petroff



Status of the Field

WMAP

Planck

SO-LAT

SO-SAT

SPIDER

BICEP/Keck

ACT

SPT

Polarbear

CLASS

• Space missions achieved exquisite 
sensitivity in CMB temperature 
anisotropy but lack sensitivity in 
polarization. 

• Ground-based experiments excel in 
polarization measurement at 
intermediate to small angular scales. 

• CLASS targets the largest scale 
( ) polarization to study 
reionization and probe inflation 
signals. 

• On the horizon: Taurus, LiteBird, 
CMB-S4…

ℓ ≤ 30
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Reionization optical depth
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Thomson scattering of free electrons 
leaves an imprint on the large scale 
CMB E-mode polarization. 

The amplitude of this signal is 
determined by the reionization optical 

depth:  τ = ∫ σTne(t)cdt
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Planck (PR4) constraints on CDM parameters  
a.k.a. the state-of-the-art of “precision cosmology”

Λ

Reionization optical depth
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Planck (PR4) constraints on CDM parameters  
a.k.a. the state-of-the-art of “precision cosmology”

Λ

sample variance

1000 times more modes

>

Reionization optical depth
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Loverde+2024Reionization optical depth



Sm
al

l-s
ca

le 
 

CM
B 

an
iso

tro
py

CM
B lensing

CMB lensing

ba
ck

gr
ou

nd
 ex

pa
ns

io
n 

BA
O

/S
N

e

6

As

τ

scalar fluctuation amplitude

reionization optical depth sum of the neutrino mass

Σmi

ωm

matter density

0.0 0.1 0.2 0.3 0.4 0.5
M∫/eV

47% 68%
0.219

14% 23%
0.511

15% 31%
0.287

1.4% 2.9%
0.522

87% 98%
0.079

53% 76%
0.170

no low-z, with low-` EE

no low-z, no low-` EE

DES 5YR, with low-` EE

DES 5YR, no low-` EE

DESI DR1, with low-` EE

DESI DR1, no low-` EE
PR3 CMB & ACT+PR4 lensing

Loverde+2024

Giarè+2023

Planck Pre-DESI 
τ = 0.08 ± 0.012
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Sailer+2025/Jhaveri+2025Giarè+2023

Planck Pre-DESI 
τ = 0.08 ± 0.012

Planck+DESI 
τ = 0.09 ± 0.012

Reionization optical depth



High- + Lensing + low-zℓ
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Planck HFI

Planck LFI
WMAP

Reionization optical depth



High- + Lensing + low-zℓ
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Planck HFI

Planck LFI
WMAP
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Reionization optical depth



Large-scale challenge and CLASS’s strategy
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• Access to large fraction (75%) of the sky. 
• Multiple frequencies for Galactic foreground 

mitigation. 40 GHz 90 GHz 150/220 GHz
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• Access to large fraction (75%) of the sky. 
• Multiple frequencies for Galactic foreground 

mitigation. 
• Polarization modulation against anisotropic 

atmospheric loading. 
- Suppress of unpolarized atmospheric noise. 
- Reduce systematics from detector pairings. 
- Unique sensitivity to circular polarizations.

M. Petroff
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• Access to large fraction (75%) of the sky. 
• Multiple frequencies for Galactic foreground 

mitigation. 
• Polarization modulation against anisotropic 

atmospheric loading. 
- Suppress of unpolarized atmospheric noise. 
- Reduce systematics from detector pairings. 
- Unique sensitivity to circular polarizations.

M. Petroff

- First measurement of atmospheric 
circular polarization. 
(Petroff+2020) 

- Best constraints on astrophysical 
circular polarization background. 
(Padilla+2020/Eimer+2024)

Circular polarization science
Eimer+2024

Datta+2023
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Large-scale challenge and CLASS’s strategy

>100x 
improvement in 
mapping speed!

Pair-diff (polarization w/o VPM)
Demodulated (polarization w/ VPM)

Harrington+(2021) Adapted

Intensity
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• Access to large fraction (75%) of the sky. 
• Multiple frequencies for Galactic foreground 

mitigation. 
• Polarization modulation against anisotropic 

atmospheric loading. 
• Scan-correlated systematics

Large-scale challenge and CLASS’s strategy

Very large-scale signals are modulated within a very narrow 
band around the telescope scanning frequency — these 
modes are highly degenerate with the systematics correlated 
with the scanning motion.

Li2024
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• Access to large fraction (75%) of the sky. 
• Multiple frequencies for Galactic foreground 

mitigation. 
• Polarization modulation against anisotropic 

atmospheric loading. 
• Scan-correlated systematics

Large-scale challenge and CLASS’s strategy

Room for Improvement 

Gain from the VPM

Limited by 

 Systematics

Best-fit 1/f model from demod data

Best-fit 1/f model from pair-diff data

Li2024
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The 90 GHz survey Li, Eimer+2025 (arXiv: 2501.11904)

Initial deployment 
in 2018-06

Deployment of a new 
polarization modulator

Detector module 
upgrade in 2022

Exclude suboptimal data with 
plastic environment seal. These 
data are recoverable with 
improved analysis techniques.
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40 GHz 
(2016-2022)

90 GHz 
(2021-2024)

Eimer,Li+2024 
Li,Eimer+2025

The 90 GHz survey Li, Eimer+2025 (arXiv: 2501.11904)
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Best demonstrated low-  performance from the ground.ℓ

Reionization

Inflationary science

Polarization modulation ( )ℓ𝗄𝗇𝖾𝖾 ≲ 20

CLASS 40 GHz

CLASS 90 GHz

CLASS Noise Spectra

— Planck  44

— Planck 100

— Planck 143

Systematics and filter correction

The 90 GHz survey Li, Eimer+2025 (arXiv: 2501.11904)
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Best demonstrated low-  performance from the ground.ℓ

The recovery of the largest-scale modes is limited by scan-
correlated systematics, and its mitigation strategy is an 
active field of research:

- Improving filtering strategy that leverages correlated 
nature of various systematic modes. (Chan+ in prep.)

- Robust characterization of the transfer function and 
reliable signal recovery despite missing modes.

- Multiple hardware improvements.

Reionization

Inflationary science

Polarization modulation ( )ℓ𝗄𝗇𝖾𝖾 ≲ 20

CLASS 40 GHz

CLASS 90 GHz

CLASS Noise Spectra

— Planck  44

— Planck 100

— Planck 143

Systematics and filter correction

The 90 GHz survey Li, Eimer+2025 (arXiv: 2501.11904)
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• Pixel-based transfer function built from map-making 
for every pixel. 

• Near-optimal  power spectra correction with quadratic 
estimator.

Q U
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https://github.com/class-telescope/xQML
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The 90 GHz survey Li, Eimer+2025 (arXiv: 2501.11904)
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• Baseline result: ; a detection of 
reionization at 99.4% confidence through cross-
correlation with Planck. 

• The result is robust against multiple analysis 
choices.

τ = 0.053+0.018
−0.019

The 90 GHz survey Li, Eimer+2025 (arXiv: 2501.11904)
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CLASS x Planck

 constraints from CLASS data aloneτ

4yr  
projection

• Continuous integration is essential for 
surpassing the current limit set by Planck. 
• More detectors being deployed right now. 
• Alternative modulation strategy 
• Funding for extended project operations. 

• The aggressive filtering is a limiting factor, 
and any small improvement there makes a big 
difference in the effective low-ell sensitivity. 
• Optimization of the filtering strategy given 

better understanding of the systematics.

Li,Eimer+2025

The 90 GHz survey Li, Eimer+2025 (arXiv: 2501.11904)
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Hardware development

Second 90 GHz telescope deployment 
Happening right now! 
• Half-populated high-yield NIST detectors. 
• Starting with a VPM, with future upgrade plan 

for a HWP.

HWP

New Reflective HWP 
• Rotating HWP with similar design for a 

drop-in replacement of the VPM. 
• 2x the polarization mapping speed. 
• Reduced modulator emission-related 

systematics. 
• Deployed since 2024-07, with 

demonstrated on-sky performance!



Hardware development: New RHWP data

20

With 8 months of data, the HWP map is already deeper than as the 3-yr VPM data.  
With preliminary indication of improved low-ell performance!

PRELIMINARY
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PRELIMINARY⇦ Same filtering 
     but NO TF correction

Hardware development: New RHWP data

With 8 months of data, the HWP map is already deeper than as the 3-yr VPM data.  
With preliminary indication of improved low-ell performance!
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Summary

• CLASS 40 and 90 GHz surveys demonstrate the efficacy 
of the polarization modulation in improving the stability 
of ground-based CMB polarization measurements. 

• CLASS measured consistent CMB E-mode spectrum in 
the range  as Planck, and obtained the first 
ground-based reionization optical depth constraint 

  through cross correlation. 

• The next phase of CLASS will drastically improve the 
sensitivity at 90GHz through instrument upgrades and 
deliver independent constraints on reionization .

2 ≤ ℓ ≤ 300

τ = 0.053+0.018
−0.019

τ

Thank you!



backup slides
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E-mode CMB Spectra
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Linear polarization maps
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Reionization optical-depth and beyond

The high-redshift reionization physics is most sensitive 
to scales , where the dependence on the transfer 
function correction is less critical. 

ℓ ⩾ 10

early reionization

Watts+2020 Adapted
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PRELIMINARY
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Atmosphere drift

Linear polarization signal

Circular polarization signal

Li+(2023a) Adapted

High-pass filter

VPM emits at same frequency as polarization 
modulation.

Demodulation does not account for the VSS, 
therefore, VSS !" DC levels in demodulated 
polarization data.

- Stable: does not significantly impact 1/f.
- Contribute to the scan synchronous noise.
- Intensity-like: cancels upon pair-diff.

VPM Synchronous Signal (VSS)

VPM: Demodulation and Emission
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