Largest Angular Scale CMB E-mode Polarization Measurement with CLASS JOHNS HOPKINS UNIVERSITY Kavli Institute for Cosmological Physics Yunyang Li University of Chicago NASA NIST

mm Universe, Chicago, 2025

Status of the Field

- Space missions achieved exquisite sensitivity in CMB temperature anisotropy but lack sensitivity in polarization.
- Ground-based experiments excel in polarization measurement at intermediate to small angular scales.
- CLASS targets the largest scale ($\ell \leq 30$) polarization to study reionization and probe inflation signals.
- On the horizon: *Taurus*, *LiteBird*, *CMB-S4*...

Thomson scattering of free electrons leaves an imprint on the large scale

determined by the *reionization optical*

Planck (PR4) constraints on ΛCDM parameters a.k.a. the state-of-the-art of "precision cosmology"

Planck (PR4) constraints on Λ CDM parameters a.k.a. the state-of-the-art of *"precision cosmology"*

reionization optical depth

sum of the neutrino mass

reionization optical depth

sum of the neutrino mass

6

7

- Access to large fraction (75%) of the sky.
- Multiple frequencies for Galactic foreground mitigation.

- Access to large fraction (75%) of the sky.
- Multiple frequencies for Galactic foreground mitigation.
- Polarization modulation against anisotropic atmospheric loading.
 - Suppress of unpolarized atmospheric noise.
 - Reduce systematics from detector pairings. _
 - Unique sensitivity to circular polarizations. -

Mirror

M. Petroff

- Access to large fraction (75%) of the sky.
- Multiple frequencies for Galactic foreground mitigation.
- Polarization modulation against anisotropic atmospheric loading.
 - Suppress of unpolarized atmospheric noise.
 - Reduce systematics from detector pairings. _
 - Unique sensitivity to circular polarizations. _

Mirror

M. Petroff

- Access to large fraction (75%) of the sky.
- Multiple frequencies for Galactic foreground mitigation.
- Polarization modulation against anisotropic atmospheric loading.
 - Suppress of unpolarized atmospheric noise.
 - Reduce systematics from detector pairings. _
 - Unique sensitivity to circular polarizations. -

M. Petroff

- Access to large fraction (75%) of the sky.
- Multiple frequencies for Galactic foreground mitigation.
- Polarization modulation ag atmospheric loading.
 - Suppress of unpolarized atmosp
 - Reduce systematics from detect _
 - Unique sensitivity to circular po —

- circular polarization. (Petroff+2020)

10

- Access to large fraction (75%) of the sky.
- Multiple frequencies for Galactic foreground mitigation.
- Polarization modulation against anisotropic atmospheric loading.

• Scan-correlated systematics

- Access to large fraction (75%) of the sky.
- Multiple frequencies for Galactic foreground mitigation.
- **Polarization modulation** against anisotropic atmospheric loading.
- Scan-correlated systematics

Exclude suboptimal data with *plastic environment seal*. These data are recoverable with improved analysis techniques.

Deployment of a new polarization modulator

Eimer,Li+2024 Li,Eimer+2025

- Pixel-based transfer function built from map-making for every pixel.
- Near-optimal power spectra correction with quadratic estimator.

https://github.com/class-telescope/xQML

- Baseline result: $\tau = 0.053^{+0.018}_{-0.019}$; a detection of reionization at 99.4% confidence through cross-correlation with Planck.
- The result is robust against multiple analysis choices.

of S-

 τ constraints from CLASS data alone

- Continuous integration is essential for surpassing the current limit set by Planck.
 - More detectors being deployed right now.
 - Alternative modulation strategy
 - Funding for extended project operations.
- The aggressive filtering is a limiting factor, and any small improvement there makes a big difference in the effective low-ell sensitivity.
 - Optimization of the filtering strategy given better understanding of the systematics.

Hardware development

Second 90 GHz telescope deployment Happening right now!

- Half-populated high-yield NIST detectors.
- Starting with a VPM, with future upgrade plan for a HWP.

19

With 8 months of data, the HWP map is already deeper than as the 3-yr VPM data. With preliminary indication of improved low-ell performance!

Hardware development: New RHWP data

With preliminary indication of improved low-ell performance!

With 8 months of data, the HWP map is already deeper than as the 3-yr VPM data.

Summary

- CLASS 40 and 90 GHz surveys demonstrate the efficacy of the polarization modulation in improving the stability of ground-based CMB polarization measurements.
- CLASS measured consistent CMB E-mode spectrum in the range $2 \le \ell \le 300$ as Planck, and obtained the first ground-based reionization optical depth constraint $\tau = 0.053^{+0.018}_{-0.019}$ through cross correlation.
- The next phase of CLASS will drastically improve the sensitivity at 90GHz through instrument upgrades and deliver independent constraints on reionization τ .

backup slides

Linear polarization maps

24

Reionization optical-depth and beyond

The **high-redshift reionization** physics is most sensitive

VPM emits at same frequency **as polarization**

Demodulation does not account for the VSS, therefore, VSS \rightarrow DC levels in demodulated

- Stable: does not significantly impact 1/f.
- Contribute to the scan synchronous noise.
- Intensity-like: cancels upon pair-diff.

	$2 \le \ell \le 30$			$31 \le \ell < 301$		
Splits	EE	BB	EB	EE	BB	EB
top/bot	0.11	0.16	0.39	0.07	0.06	0.77
left/right	0.29	0.76	0.27	0.19	0.94	0.57
radial	0.34	0.67	0.44	0.88	0.93	0.05
horizontal	0.63	0.21	0.65	0.59	0.40	0.81
vertical	0.41	0.97	0.73	0.60	0.52	0.22
quadrupole	0.97	0.98	0.47	0.54	0.09	0.25
MUX halves	0.17	0.44	0.75	0.86	0.82	0.91
MUX parity	0.08	0.88	0.36	0.58	0.67	0.06
VPM sync.	0.000	0.45	0.11	0.73	0.01	0.84
bs in/out	0.97	0.72	0.86	0.68	0.96	0.31
bs pos/neg	0.13	0.29	0.73	0.88	0.12	0.01
az-east/west	0.23	0.002	0.64	0.03	0.33	0.92
az- 2π	0.83	0.97	0.99	0.44	0.40	0.93
az-4 π	0.74	0.53	0.99	0.07	0.68	0.88
az-velocity	0.43	0.84	0.997	0.39	0.16	0.62
6h in/out	0.57	0.22	0.34	0.98	0.34	0.03
moon	0.46	0.24	0.35	0.93	0.88	0.58
midnight	0.75	0.15	0.30	0.10	0.17	0.02
survey	0.17	0.02	0.42	0.77	0.87	0.67
KS test	0.29	0.47	0.84	0.61	0.39	0.19