The SZ-Mass scaling relation with The Sunyaev-Zeldovich Large Program of NIKA2 collaboration Alice Moyer-Anin On behalf of the NIKA2 collaboration

3rd year PhD student Under the supervison of Frédéric Mayet

Cluster number count with SZ observations The SZ Large Program of NIKA2 The SZ-Mass scaling relation The LPSZ sample Calibration method Implication for cluster cosmology

Cosmology with the Sunyaev Zeldovich (SZ) effect

SZ thermal effect: CMB distortion related to the electronic pressure of the intra-cluster medium (ICM)

3

The SZ Large program of NIKA2

NIKA2 high-resolution camera (KIDs) Installed at the IRAM 30 m telescope in Granada Operating since 2017

SZ Large Program (observations finished in 2023)

Sample of 38 clusters fully observed

Selected with a box selection

Box selection \rightarrow insensitive to the underlying mass distribution \rightarrow Suffisant range in Y₅₀₀ and M₅₀₀

Clusters observed both in SZ (NIKA2) and X-ray (XMM Newton)

LPSZ official pipeline: PANCO2

radius [kpc

Panco2 Kéruzoré et al TheOJA 2023

SZ scaling relation

$$E_{z}^{-2/3} \left(\frac{D_{A}^{2}(z)Y_{500}}{10^{-4}\mathrm{Mpc}^{2}} \right) = 10^{\alpha} \left(\frac{M_{500}}{6 \times 10^{14}M_{\odot}} \right)^{\beta} \left(Assumptions: \begin{array}{c} \text{ spherical assumption } \bullet \text{ hydrostatic equilibrium} \\ \bullet \text{ ideal gas assumption} \end{array} \right)$$

$$\ln \text{ fact } P\left(\log(Y_{obs}) | \log(M_{obs}) \right) = \mathcal{N}\left(\alpha + \beta \log(M_{obs}), \sigma_{int}^{2} \right) \quad \text{three parameters} \quad \begin{array}{c} \alpha \text{ the intercept} \\ \beta \text{ the slope} \\ \sigma_{\text{int}} \text{ the scatter} \end{array}$$

different SZ-HEMass scaling relations:

_	Planck 2013	Chandra- Planck 2024	NIKA2-LPSZ 2025
Data	XMM-Newton Planck	Chandra Planck	XMM-Newton NIKA2 + Planck
redshift	[0,0.45]	[0,0.35]	[0.5,0.9]
sample size	71	146	29
resolution	X : 6.6'' SZ : ~6 '	X : 0.2'' SZ : ~6'	X : 6.6'' SZ : 17.6''
mass estimation	derived X Mass	derived X Mass	SZ-X Mass

Aim: obtain a scaling relation

NIKA2-LPSZ

- At larger redshift
- With controlled systematics

including cluster morphology

Planck 2013 results XX A&A G. Aymerich et al. A&A 2024

LPSZ selection function

Effect of the LPSZ selection function

Box selection \rightarrow insensitive to the underlying mass distribution \rightarrow No effect of Planck selection function

Problem: the box selection induces a shift on our parameter estimation (as all selection functions)

How to take into account the LPSZ selection function?

Scaling relation LPSZ pipeline

LIRA M. Sereno MNRAS (2016)

LInear Regression in Astronomy

Main characteristics:

• Gibbs sampling • Bayesian hierarchical methods

SBI A. Tejero-Cantero et. al. JOSS (2020) Simulation Based inference

Main characteristics:

• Based on Normalizing flow • Likelihood free inference

Training with simulations

Gives $p(\theta \mid X)$ following X=LIRA outputs θ =Scaling relation

Scaling relation LPSZ pipeline: SBI training

mmU 2025 Chicago

Alice Moyer-Anin

Can we trust the estimation with our pipeline?

Preliminary Results: Validation

 $P\left(\log(Y_{obs})|\log(M_{obs})\right) = \mathcal{N}\left(\alpha + \beta \log(M_{obs}), \sigma_{int}^{2}\right)$

Thanks to the method developped \rightarrow non-biased Scaling relation estimation

 $\label{eq:Validation} \text{Validation metrics: } \operatorname{bias_{std}} = \frac{\alpha_{SBI} - \alpha_{True}}{std_{SBI}} \quad \text{For a range of scaling relations}$

If $bias_{std} \in [-2, 2]$ means input values within 2 σ error bars of SBI outputs

 $\alpha,\,\beta$ and σ unbiased and with coherent error bars

Method validated for several scaling relations

Applied on the LPSZ sample

LPSZ preliminary result

Application to cosmology

Sample used: Planck 2015 sample Planck XXIV A&A (2015) Analysed with Class-sz B. Bolliet et. al. EPJ Web Conf. (2024) collaboration with B.Bolliet

LPSZ scaling relation Planck scaling relation

➔ Applied on same cluster catalog

Cosmological result

- ightarrow Comparison with Planck result
- \rightarrow Combined parameter in agreement with Planck result

Planck scaling relation	0.777 ± 0.032	
LPSZ scaling relation	0.791 ± 0.35	

- An unbiased Scaling Relation pipeline
- Robustness test done
- First result of the scaling relation with
 - High angular resolution observations
 - Intermediate to high redshift clusters

 \rightarrow Paper in preparation

- Cosmological results
 - Combined parameter in agreement with Planck result

17

Thank you

radius [kpc]

Simulation based inference

Several SBI type : here the SNPE is used

Sequential Neural Posterior estimation

 \rightarrow Gives an estimation of the posterior given an observation $p(\theta \mid X)$

 $\rightarrow \theta = [\alpha_{\text{True}}, \beta_{\text{True}}, \sigma_{\text{True}}]$ \rightarrow X = [$\alpha_{\text{LIRA}}, \beta_{\text{LIRA}}, \sigma_{\text{LIRA}}$]

For a given obs : the SBI will give all the model parameters that can reproduce this observation (distribution)

Comparison between observed and simulated data \rightarrow Posterior estimation p($\theta \mid X$)

Simulator: Same simulation as before: sample Y_{500} - M_{500}

