THE FRONTIER EXASCALE SIMULATION A LEAP FORWARD IN COSMOLOGICAL HYDRODYNAMICS

NICHOLAS FRONTIERE CPS Division mm Universe 2025 June 23rd 2025

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Cosmological Simulations At Argonne

Role of Cosmology Simulations

- Simulations produce full sky synthetic catalogs, characterize systematics, and provide constraints of LCDM by solving the inverse problem
- Major impact on multi-billion dollar DOE investment in ground and space-based sky surveys for planning, calibration, and validation
- Requires large-scale, controlled accuracy, multi-physics simulations at high dynamic range

- Hybrid approach -- MPI + X (OpenMP, CUDA, HIP, SYCL, ...)
- Spectral Particle Mesh solver with a 3D FFT scalable to millions of ranks capable of processing grids 25000³+ at scale
- Short range force solvers individually optimized to perform on both multi-core and GPU accelerated hardware
- Capable of extreme scale simulations on all modern
 supercomputing hardware

Legacy Survey of Space and Time

Simulation Characteristics

Domain

- 1-10 Gpc scale simulations
- Dynamic range of million to one
- Mass resolutions 10^7 - $10^9 M_{\odot} h^{-1}$

Gravity

- Vlasov-Poisson equation
- Dominates scales > ~1 Mpc
- N-body

Gas Physics

- High order SPH solver, CRKSPH
- UVB Heating and Atomic Cooling
- Supernovae and Star formation
- **Chemical Enrichment**
- AGN Feedback
- Emulated and calibrated to observations

CRKSPH Algorithm

Advantages of SPH

- Galilean invariant
- Intrinsically adaptive
- Agnostic to unique geometries
- Conservative
- Easily parallelizable/scalable

Disadvantages of (traditional) \$

- Problems with shocks, gradients, and fluid mixing
- Errors at zero'th order
- Contact discontinuities violate formal assumptions
- Problems with artificial viscosity
- Many of these problems not removed at reasonable resolutions

COMPSPH

Conservative Reproducing Kernel SPH

- Higher-order reproducing kernels exactly reproduce constant and linear order fields
- Conservative reformulation of the dynamical equations maintains exact conservation of energy and momentum
- New artificial viscosity that capitalizes on the increased accuracy of the velocity gradients, reduces excessive SPH artificial diffusion
- No artificial conductivity required

Frontiere et al., J. Comp. Phys. 332, 160 (2017)

'Blob' test with CRK-SPH showing blob disruption due to Kelvin-Helmholtz and Rayleigh-Taylor instabilities **Multi-physics Coupling**

Multi-physics Coupling

CRK-HACC Runtime Overview

All compute intensive solvers and analysis are offloaded to the GPU

At scale on Frontier achieves 513 PFLOPs of performance evaluating 46.6 billion particles/s

Age of Exascale

Next generation of supercomputers

- Frontier ORNL 1.353 Eflop/s
- Aurora ANL 1.012 Eflop/s
- El Capitan LLNL 1.742 Eflop/s
- GPU accelerated
- Mixed precision

Exascale class capabilities

- 10-50x improvement
- Hydro simulations are typically 10-30x slower than GO
- Previous state-of-the-art GO simulations can now include gas physics. Trillion(s) particles
- Next-generation GO simulations in the 10+ trillion particle class.

Exascale Class Simulations

Exascale unlocks the ability to run previous state of the art gravity only simulations now including hydrodynamics in a week of machine time (~ 1 yr CPU)

Gravity only simulations break into the **10+ trillion** particle class

Exascale Class Simulations

Exascale unlocks the ability to run previous state of the art gravity only simulations now including hydrodynamics in a week of machine time (~ 1 yr CPU)

Gravity only simulations break into the **10+ trillion** particle class

Exascale Class Simulations

Exascale unlocks the ability to run previous state of the art gravity only simulations now including hydrodynamics in a week of machine time (~ 1 yr CPU)

Gravity only simulations break into the **10+ trillion** particle class

Survey Scale

- 3.150 Gpc h⁻¹ domain
- 2 x 12600³ particles 4 trillion
- $2 \times 10^8 \text{ M}_{\odot} \text{ h}^{-1}$ baryon mass resolution

Cluster Science

- 2000+ (13) clusters > $10^{15} \,\mathrm{M_{\odot}} \,h^{-1}$
- 570,000+ (75k) > 10¹⁴ M⊙ h⁻¹
- Full sky particle LC (z < 3)
 - Consistent maps and catalogs
 - Downscale LC out to z < 5

Extensive Data Outputs (12 PBs)

- Full particles for objects > $10^{13} M_{\odot} h^{-1}$
- Merger trees, catalogs and snapshots
- ~ 1 billion galaxies at z = 0

Survey Scale

- 3.150 Gpc h⁻¹ domain
- 2 x 12600³ particles 4 trillion
- $2 \times 10^8 \text{ M}_{\odot} \text{ h}^{-1}$ baryon mass resolution

Cluster Science

- 2000+ (13) clusters > 10¹⁵ M_☉ h⁻¹
- 570,000+ (75k) > 10¹⁴ M⊙ h⁻¹
- Full sky particle LC (z < 3)
 - Consistent maps and catalogs
 - Downscale LC out to z < 5

Extensive Data Outputs (12 PBs)

- Full particles for objects > $10^{13} M_{\odot} h^{-1}$
- Merger trees, catalogs and snapshots
- ~ 1 billion galaxies at z = 0

Mock observations of a cluster on the light cone. Thermal and kinematic Sunyaev-Zeldovich maps, the total matter density contrast, and the flux emission in a bolometric X-ray band

Survey Scale

- 3.150 Gpc h⁻¹ domain
- 2 x 12600³ particles 4 trillion
- $2 \times 10^8 \text{ M}_{\odot} \text{ h}^{-1}$ baryon mass resolution

Cluster Science

- 2000+ (13) clusters > $10^{15} \,\text{M}_{\odot} \,\text{h}^{-1}$
- 570,000+ (75k) > 10¹⁴ M⊙ h⁻¹

Full sky particle LC (z < 3)

- Consistent maps and catalogs
- Downscale LC out to z < 5

Extensive Data Outputs (12 PBs)

- Full particles for objects > $10^{13} M_{\odot} h^{-1}$
- Merger trees, catalogs and snapshots
- ~ 1 billion galaxies at z = 0

The large volume enables the identification and study of rare, dynamically complex systems

Survey Scale

- 3.150 Gpc h⁻¹ domain
- 2 x 12600³ particles 4 trillion
- $2 \times 10^8 \text{ M}_{\odot} \text{ h}^{-1}$ baryon mass resolution

Cluster Science

- 2000+ (13) clusters > $10^{15} \,\mathrm{M_{\odot}} \,h^{-1}$
- 570,000+ (75k) > 10¹⁴ M⊙ h⁻¹
- Full sky particle LC (z < 3)
 - Consistent maps and catalogs
 - Downscale LC out to z < 5

Extensive Data Outputs (12 PBs)

- Full particles for objects > $10^{13} M_{\odot} h^{-1}$
- Merger trees, catalogs and snapshots
- ~ 1 billion galaxies at z = 0

Slice through full-sky maps showing, clockwise from top left: kSZ, tSZ, X-ray, and density.

Survey Scale

- 3.150 Gpc h⁻¹ domain
- 2 x 12600³ particles 4 trillion
- $2 \times 10^8 \text{ M}_{\odot} \text{ h}^{-1}$ baryon mass resolution

Cluster Science

- 2000+ (13) clusters > $10^{15} \,\text{M}_{\odot} \,\text{h}^{-1}$
- 570,000+ (75k) > 10¹⁴ M⊙ h⁻¹
- Full sky particle LC (z < 3)
 - Consistent maps and catalogs
 - Downscale LC out to z < 5

Extensive Data Outputs (12 PBs)

- Full particles for objects > $10^{13} M_{\odot} h^{-1}$
- Merger trees, catalogs and snapshots
- ~ 1 billion galaxies at z = 0

Slice through full-sky maps showing, clockwise from top left: kSZ, tSZ, X-ray, and density.

Survey Scale

- 3.150 Gpc h⁻¹ domain
- 2 x 12600³ particles 4 trillion
- $2 \times 10^8 \text{ M}_{\odot} \text{ h}^{-1}$ baryon mass resolution

Cluster Science

- 2000+ (13) clusters > 10¹⁵ M_☉ h⁻¹
- 570,000+ (75k) > 10¹⁴ M⊙ h⁻¹
- Full sky particle LC (z < 3)
 - Consistent maps and catalogs
 - Downscale LC out to z < 5

Extensive Data Outputs (12 PBs)

- Full particles for objects > $10^{13} M_{\odot} h^{-1}$
- Merger trees, catalogs and snapshots
- ~ 1 billion galaxies at z = 0

Calibrated Galaxy Stellar Mass Function

Survey Scale

- 3.150 Gpc h⁻¹ domain
- 2 x 12600³ particles 4 trillion
- $2 \times 10^8 \text{ M}_{\odot} \text{ h}^{-1}$ baryon mass resolution

Cluster Science

- 2000+ (13) clusters > $10^{15} \,\text{M}_{\odot} \,\text{h}^{-1}$
- 570,000+ (75k) > 10¹⁴ M⊙ h⁻¹
- Full sky particle LC (z < 3)
 - Consistent maps and catalogs
 - Downscale LC out to z < 5

Extensive Data Outputs (12 PBs)

- Full particles for objects > $10^{13} M_{\odot} h^{-1}$
- Merger trees, catalogs and snapshots
- ~ 1 billion galaxies at z = 0

Ember Cluster

1/100,000th subvolume largest cluster zoom-in

Ember Cluster

Frontier-E Simulation

N. Frontiere¹, M. Buehlmann¹, J.D. Emberson¹, S. Habib^{1,2}, P. Larsen¹, K. Heitmann², C.-A. Faucher-Giguère³

¹CPS Division, Argonne National Laboratory, Lemont, IL 60439, USA ²HEP Division, Argonne National Laboratory, Lemont, IL 60439, USA ³CIERA and Department of Physics and Astronomy, Northwestern University, Evanston, IL 60201, USA

1/100,000th subvolume largest cluster zoom-in

Four ranks out of 72,000

Simulation Suites

- 128 Mpc h⁻¹ initial calibration set
- 256 Mpc h⁻¹ cluster calibration

Targets

- Multi-redshift Galaxy Stellar Mass Function
- Cluster Gas Density Profiles

- Varying across 5 active parameters
- Two wind, three for AGN
- Exascale Throughput
 - Exploration at larger volumes
 - Parameter expansion hydro + cosmology

Simulation Suites

- 128 Mpc h⁻¹ initial calibration set
- 256 Mpc h⁻¹ cluster calibration

Targets

- Multi-redshift Galaxy Stellar Mass Function
- Cluster Gas Density Profiles

- Varying across 5 active parameters
- Two wind, three for AGN
- Exascale Throughput
 - Exploration at larger volumes
 - Parameter expansion hydro + cosmology

Simulation Suites

- 128 Mpc h⁻¹ initial calibration set
- 256 Mpc h⁻¹ cluster calibration

Targets

- Multi-redshift Galaxy Stellar Mass Function
- Cluster Gas Density Profiles

- Varying across 5 active parameters
- Two wind, three for AGN
- Exascale Throughput
 - Exploration at larger volumes
 - Parameter expansion hydro + cosmology

Simulation Suites

- 128 Mpc h⁻¹ initial calibration set
- 256 Mpc h⁻¹ cluster calibration

Targets

- Multi-redshift Galaxy Stellar Mass Function
- Cluster Gas Density Profiles

- Varying across 5 active parameters
- Two wind, three for AGN
- Exascale Throughput
 - Exploration at larger volumes
 - Parameter expansion hydro + cosmology

Simulation Suites

- 128 Mpc h⁻¹ initial calibration set
- 256 Mpc h⁻¹ cluster calibration

Targets

- Multi-redshift Galaxy Stellar Mass Function
- Cluster Gas Density Profiles

- Varying across 5 active parameters
- Two wind, three for AGN
- Exascale Throughput
 - Exploration at larger volumes
 - Parameter expansion hydro + cosmology

Simulation Suites

- 128 Mpc h⁻¹ initial calibration set
- 256 Mpc h⁻¹ cluster calibration

Targets

- Multi-redshift Galaxy Stellar Mass Function
- Cluster Gas Density Profiles

- Varying across 5 active parameters
- Two wind, three for AGN
- Exascale Throughput
 - Exploration at larger volumes
 - Parameter expansion hydro + cosmology

Exascale Class Gravity Simulations

Upcoming Aurora Exascale Simulation Pair

- Primordial non-Gaussianity GO suite
 - 5.5 Gpc/h domain
 - 22,000³ particles **10 trillion**
 - $10^9 M_{\odot} h^{-1}$ mass resolution

Investigate PNG in 1 > k > 10⁻³ Mpc⁻¹

- Blinded analyses
- SphereX full sky and DESI mocks
- Assembly histories used for simulated sky observables
- Synthetic sky catalogs generated using both galaxy-halo connection and ML methods

Particle light-cone visualizations from the 'Farpoint' run (Frontiere et al., ApJS 2022), a high mass resolution, large-volume cosmological simulation run with HACC

Machine Learning Analyses

SED Painting N-body Simulations

- Mass accretion histories, are connected with star formation histories and dust attenuation curves
- Produces billions of galaxies covering full sky, across survey sensitive redshift ranges
- Painting galaxies with colors
 - Input stellar age, metallicity and SSP spectral emissions
 - Output catalogs include luminosity profiles, galaxy SEDs along with photometry for Rubin, SPHEREx, COSMOS and other surveys

Multi-modal, multi-task model training

- Scalar catalogs, time-series, SEDs, merger trees, galaxy images, density fields: multiple modalities representing multiple representations of the same object
- Foundation model connects simulation values with and observables

Machine Learning Analyses

SED Painting N-body Simulations

- Mass accretion histories, are connected with star formation histories and dust attenuation curves
- Produces billions of galaxies covering full sky, across survey sensitive redshift ranges
- Painting galaxies with colors
 - Input stellar age, metallicity and SSP spectral emissions
 - Output catalogs include luminosity profiles, galaxy SEDs along with photometry for Rubin, SPHEREx, COSMOS and other surveys

Multi-modal, multi-task model training

- Scalar catalogs, time-series, SEDs, merger trees, galaxy images, density fields: multiple modalities representing multiple representations of the same object
- Foundation model connects simulation values with and observables

The Exascale Future is Bright

- Exascale machines provide a powerful tool to drive numerical cosmology science
- Enabling >10× leap in simulation scale: from trillion-particle hydro to 10+ trillion GO in ~week(s) of machine time.
- Generated datasets are massive, ideal for ML training
- Capable of running targeted emulation suites in new optimization domains
- Will significantly advance predictive capabilities and simulation fidelity necessary to validate and interpret results from ongoing and upcoming surveys

slice through downscaled Frontier-E simulation raytracing visualization

QUESTIONS?

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

EXTRA SLIDES (PLOTS)

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

CRK-HACC: GPU-Accelerated Analysis

DBSCAN

- Density-Based Spatial Clustering of Applications with Noise Collect particles that are within a "linking length" of each other Define the minimum number of neighbor points (MinPts)

FOF Finder

- "Friends-of-Friends"
- Commonly used to find dark matter halos
- FOF is DBSCAN with MinPts = 1

SOD

- Spherical Overdensity Halo finding
- Integrated spherical shells to a given mass threshold
- Used for both SO halo catalogs as well as galaxy catalogs

ArborX

- Implemented DBSCAN on top of BVH (Bounding Volume Hierarchy) tree and optimized performance
- Publicly available at ٠ https://github.com/arborx/ArborX/wiki/DBSCAN

Performance

The ArborX implementation is a factor of **10x faster** than the optimized OpenMP threaded CPU version of FOF finding

Hierarchical DBSCAN

Future work replacement for "subhalo" finding

CRK-HACC: Galaxy Finding with GPU accelerated DBSCAN

Frontier-E Cumulative Time to Solution

- Short-range computational operations dominate TTS
- Asynchronous data bleeding using NVMe provides high-bandwidth I/O
- Complete in 1 week of machine time.
 On the CPUs of Frontier, the same simulation would take ~1 year to run

Frontier-E GPU Efficiency

Single-node performance similar across GPU vendors 9000-node per-GPU performance distribution at high and low redshift

Frontier-E Scaling

 Near-ideal weak and strong scaling

 Achieved
 513 PFLOPs on full machine

 Processing 46.6 billion particles per second

nIFTy Cluster Comparison

Consistent results with modern SPH, moving-mesh, and grid-based codes

Galaxy Metallicity

Gas Fraction

Stellar Mass - Halo Mass Relation

TSZ Power Spectrum

CMB Lensing

TSZ x CMB Lensing

Scaling Relations – M_{gas}-M₅₀₀

Scaling Relations – Y_x-M_{gas}

Frontier-E

step 624 (z=0.00)

Scaling Relations - T₅₀₀-L₅₀₀

Frontier-E

Scaling Relations – L₅₀₀-M₅₀₀

Frontier-E

Scaling Relations – L₅₀₀-M_{gas}

Frontier-E

Cluster Profiles – Gas Density

Frontier-E

Cluster Profiles – Gas Entropy

Frontier-E

step 624 (z=0.00)

Cluster Profiles – Gas temperature

Frontier-E

step 624 (z=0.00)

Cluster Profiles – Gas Pressure

Frontier-E

Cluster Profiles – Metallicity

Calibrated Galaxy Stellar Mass Function

Rare Cluster Example

Full-sky maps showing, clockwise from top left: kSZ, tSZ, X-ray, and density. Full-sky maps showing, clockwise from top left: kSZ, tSZ, X-ray, and density.

Self-similarity with Cooling

Assuming a power-law cooling source can check self-similarity

