

Blind detection of galaxy clusters in the COSMOS field via the SZ effect

mm Universe 2025 - June 24, 2025

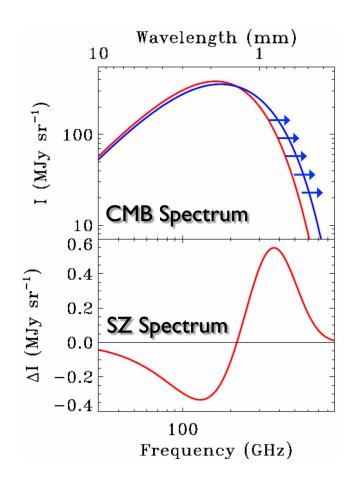
Damien Chérouvrier, Juan F. Macías-Pérez, F. Xavier Désert, on behalf of the NIKA2 collaboration

Galaxy cluster blind detection

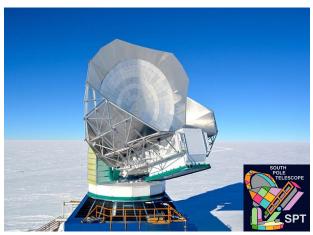
I. Context

- II. Cluster candidates detection
- III. Cluster candidates properties
- IV. Cluster sample characterization

Sunyaev-Zel'dovich effect

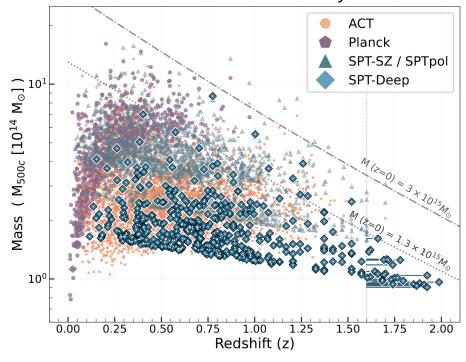

CMB spectral distortion from Inverse Compton scattering with clusters' hot electrons in the ICM

- Very distinct spectrum
- Compton parameter : $y = \frac{\sigma_T}{m_e c^2} \int P_e dl$
- SZ effect is redshift independent (not affected by cosmological dimming)


Image credit: ESA / HFI & LFI Consortia

A2319 Cluster observed by Planck

Millimeter large SZ surveys

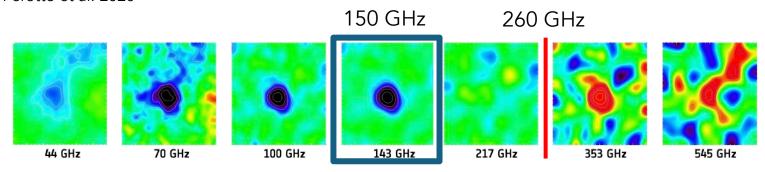


R₅₀₀: radius at which the mean cluster density is 500 times the critical density of the Universe

Catalog of thousands of SZ clusters from previous millimeter large surveys (Planck, ACT, SPT)

Kornoelje et al 2025

Distribution in the mass-redshift plane of all the clusters published in the Planck, SPT, and ACT catalogs

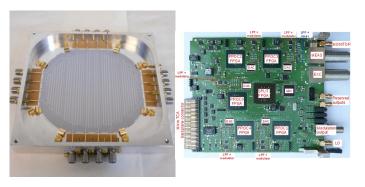

NIKA2

- Dual band millimeter camera of 2 900 Kinetic Inductance Detectors (KIDs) installed at the IRAM 30m telescope
- Built in Grenoble GIS KIDS (LPSC, Institut Néel, IPAG, IRAM)
- Operating since 2015, we dispose of 1300h of guaranteed time

Observing band	150 GHz	260 GHz		
Field of view [arcmin]	6.5	6.5		
Angular resolution [arcsec]	17.6 ± 0.1	11.1 ± 0.2		
Mapping speed [arcmin².mJy-².h-1]	1388 ± 174	111 ± 11		

- Large field of view
- High angular resolution
- High sensitivity

Perotto et al. 2020



A2319 Cluster observed by Planck

IRAM telescope

Monfardini+ 17, Bourrion+ 16, Adam+ 18

NIKA2 KIDs array and readout board

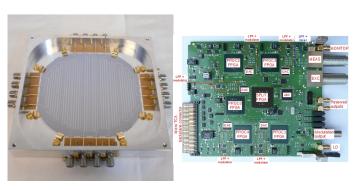
NIKA2

- Dual band millimeter camera of 2 900 Kinetic Inductance Detectors (KIDs) installed at the IRAM 30m telescope
- Built in Grenoble GIS KIDS (LPSC, Institut Néel, IPAG, IRAM)
- Operating since 2015, we dispose of 1300h of guaranteed time

Observing band	150 GHz	260 GHz		
Field of view [arcmin]	6.5	6.5		
Angular resolution [arcsec]	17.6 ± 0.1	11.1 ± 0.2		
Mapping speed [arcmin².mJy-².h-1]	1388 ± 174	111 ± 11		

- Large field of view
- High angular resolution
- High sensitivity

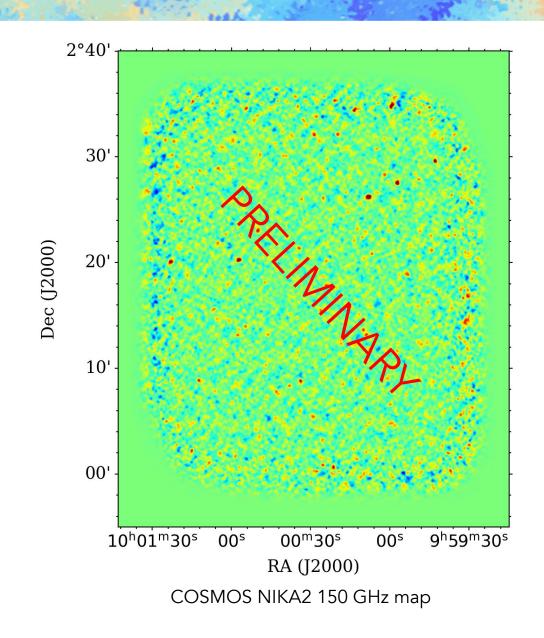
Perotto et al. 2020


Powerful instrument to study the tSZ effect in high redshift clusters

(see Alice and Fred's talk on NIKA2 LPSZ results)

IRAM telescope

Monfardini+ 17, Bourrion+ 16, Adam+ 18



NIKA2 KIDs array and readout board

Blind cluster detection in deep NIKA2 fields

- Data acquired by the NIKA2 Cosmological Legacy Survey (N2CLS) Large Program
- ~195 hours of deep field observations of the well-known COSMOS field
- ~1400 arcmin² (~0.4 deg²) field
- Used for the detection of high redshift galaxies (Bing+2023, Berta+2025) – see Stefano's talk

Objective : Blindly detect galaxy clusters with NIKA2

Galaxy cluster blind detection

I. Context

II. Cluster candidates detection

III. Cluster candidates properties

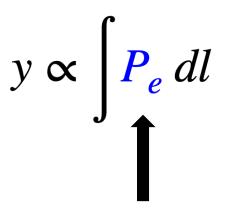
IV. Cluster sample characterization

Blind cluster detection: Matched filter technique

- Used in the construction of previous large surveys (Planck, SPT, ACT) cluster catalogs
- Enhances the SNR of sources with a well-known spatial template (e.g galaxy clusters)
- Single frequency match filter: 260 GHz data not sensitive to the tSZ effect used for masking point sources (mainly dusty galaxies)

Maps

$$M(\vec{x}) = S(\vec{x}, \theta_c) + N(\vec{x})$$
Spatial template Noise


Matched Filter (Fourier space)

$$\boldsymbol{\Psi}(\vec{k}) = \left[\boldsymbol{S}(\vec{k})^{T} \boldsymbol{C}(\vec{k})^{-1} \boldsymbol{S}(\vec{k})\right]^{-1} \boldsymbol{S}(\vec{k}) \boldsymbol{C}(\vec{k})^{-1}$$

Package pymf from Erler et al. 2019

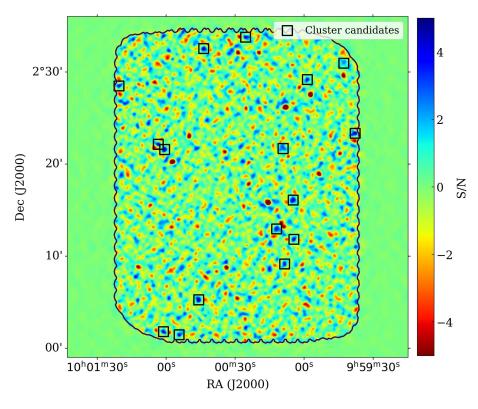
Blind cluster detection

- 1. Use a Compton 2D profile as template
 - From gNFW pressure profile (Nagai et al. 2007)
 - With Arnaud et al. 2010 (A10) parameters
- 2. Filter the map with different template sizes
- 3. Find peaks in the filtered map above a signal-to-noise ratio (SNR) threshold of 4

gNFW model:
$$P_e(r) = P_0 \left(\frac{r}{r_p}\right)^{-c} \left[1 + \left(\frac{r}{r_p}\right)^a\right]^{\frac{c-b}{a}}$$

-> 5 parameters : P_0 amplitude

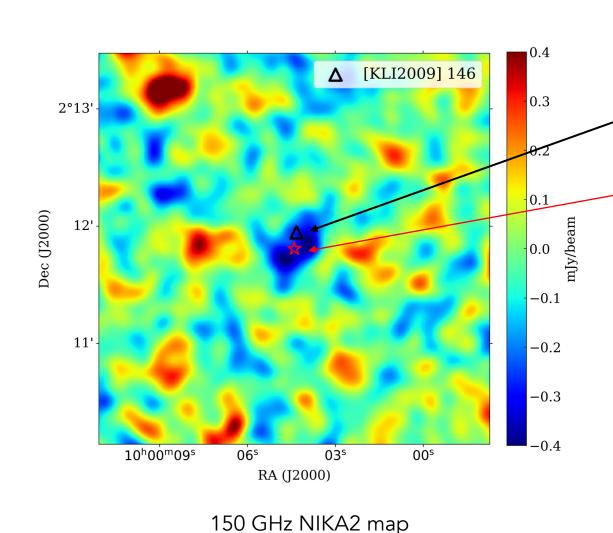
 r_p , a transition radius/ steepness


c, b internal/ external slopes

Blind cluster detection

- 1. Use a Compton 2D profile as template
 - From gNFW pressure profile (Nagai et al. 2007)
 - With Arnaud et al. 2010 (A10) parameters
- 2. Filter the map with different template sizes
- 3. Find peaks in the filtered map above a signal-tonoise ratio (SNR) threshold of 4

We have 16 cluster candidates after these 3 steps


Filtered NIKA2 150 GHz map with a cluster template the size of the beam

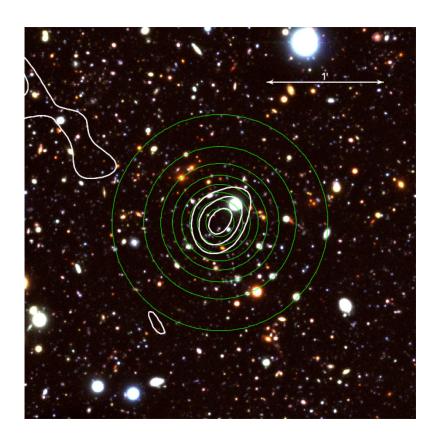
Candidate clusters have a positive SNR (negative sign accounted for in the filter)

Arxiv: 2506.18231

Cluster candidates validation

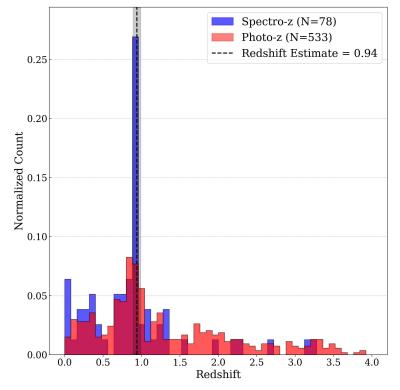
 Search cluster catalogs in the literature to find possible matches with our candidates

Optically (spectro redshift) detected cluster


Cluster candidate

- Clear negative signal in the map
- Match with a high redshift cluster at z ~ 0.94 :
 (KLI2009) 146

8 of our 16 detections match with a previously detected cluster


Arxiv: 2506.18231

Spectro and photo redshift catalogs

HSC *gri* map with SNR contours (white) and best-fit tSZ model (green)

- In most case, redshift estimates are found at the peak of redshift distribution
- Some unidentified candidates also have welldefined redshift peaks

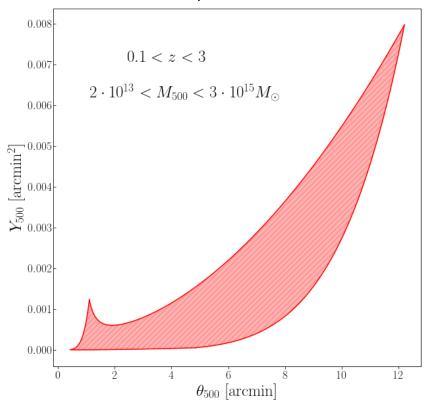
Normalized spectroscopic (blue) and photometric (red) redshift counts within a 1 arcmin radius

Cluster candidate sample

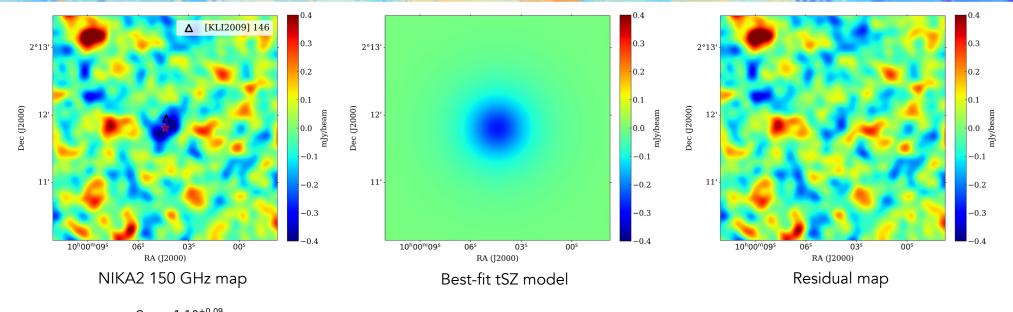
Candidate Name	RA	DEC	S/N	Z	$ heta_{500}$	Y ₅₀₀	M ₅₀₀	Matching cluster name
	0	0			arcmin	10^{-5} arcmin^2	$10^{14}~{ m M}_{\odot}$	(distance ["])
NK2-CL J100045.8+020514.3	150.1907	2.0873	5.31	_	Size	tSZ Flux	Mass	_
NK2-CL J095937.7+022320.4	149.9071	2.3890	5.00	0.74 ± 0.03 (p)				ALH J0959.38+0223.03 (17.8")
NK2-CL J100004.7+021604.4	150.0194	2.2679	4.97	_				-
NK2-CL J100043.6+023232.4	150.1818	2.5423	4.87	_				_
NK2-CL J100025.3+023346.4	150.1056	2.5629	4.67	0.72±0.02 (p)				[BMH2011] 124 (11.5")
NK2-CL J100100.6+022134.4	150.2524	2.3596	4.67	0.77±0.01 (p)				[SCC2012] 0788 (9.1")
NK2-CL J100004.4+021148.4	150.0183	2.1968	4.60	0.94 ± 0.05 (s)				[KLI2009] 146* (8.7")
NK2-CL J100103.4+022208.4	150.2641	2.3690	4.54	_				_
NK2-CL J100011.9+021256.5	150.0494	2.2157	4.48	$0.24\pm0.08^{**}(p)$				XMMXCS J100012.3+021246.7 (11.7")
NK2-CL J100101.1+020146.6	150.2546	2.0296	4.30	_				_
NK2-CL J100054.3+020126.4	150.2262	2.0240	4.28	1.42±0.01 (p)				[SCC2012] 1517 (16.0")
NK2-CL J100009.1+022140.3	150.0378	2.3612	4.27	_				_
NK2-CL J095942.6+023056.5	149.9277	2.5157	4.08	0.73 ± 0.02 (s)				DESI 2353000051 (12.0")
NK2-CL J100120.5+022828.2	150.3353	2.4745	4.07	_				_
NK2-CL J100008.4+020908.3	150.0350	2.1523	4.04	_				_
NK2-CL J095958.5+022910.4	149.9938	2.4862	4.01	0.40±0.01 (p)		ı	L	[SCC2012] 0270 (14,8")

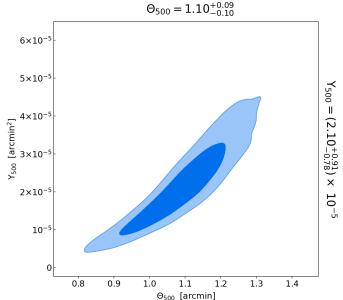
8 of our 16 detections match with a previously detected cluster or group of galaxies

Galaxy cluster blind detection


- I. Context
- II. Cluster candidates detection
- III. Cluster candidates properties
- IV. Cluster sample characterization

Y_{500} - θ_{500} measurements


- Fit a cluster model using MCMC sampling, with 2 free parameters M_{500} and z to find Y_{500} - θ_{500}
- Model: integrated gNFW pressure profile model (Nagai et al. 2007) with fixed parameters as in Arnaud 2010
- Account for transfer function of data reduction
- Flat priors on M_{500} and z (unless known)


$$M_{500}$$
 $-z \leftrightarrow Y_{500} - heta_{500}$ Mass Redshift tSZ Flux Size

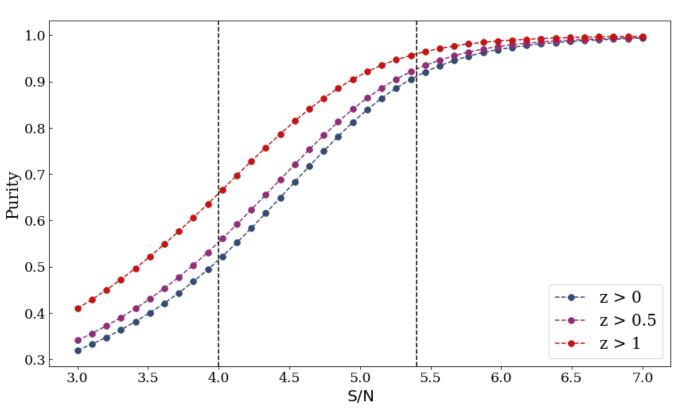
Possible values of $Y_{500} - \theta_{500}$ based on priors used

Zoom in on NK2-CL J100004.4+021148.4 (z~0.94)

- We can "fix" the redshift for candidates with a known counterpart
- Possible to get a mass estimation in this case

$$M_{500} = 1.21^{+0.27}_{-0.27} \times 10^{14} M_{\odot}$$

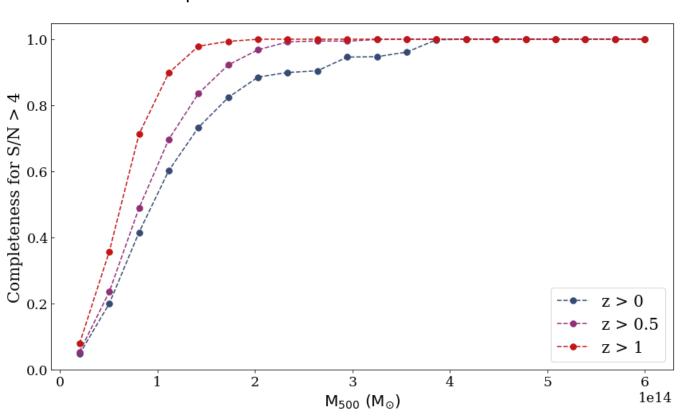
For a Planck like scaling relation (*Arnaud et al. 2010*) (see Alice's talk on NIKA2 scaling relation)


Galaxy cluster blind detection

- I. Context
- II. Cluster candidates detection
- III. Cluster candidates properties
- IV. Cluster sample characterization

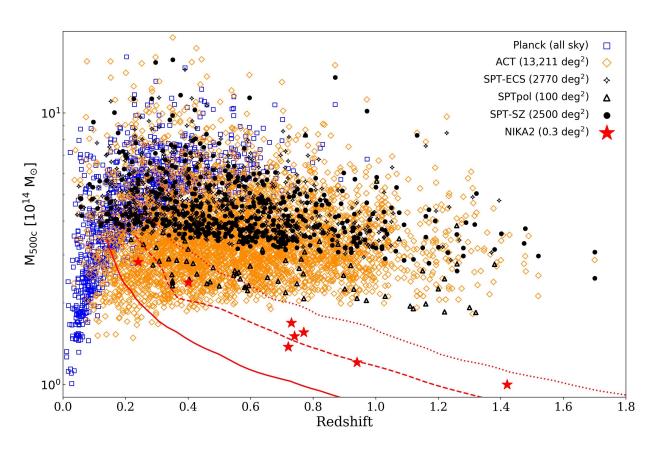
Cluster sample characterization

- Realistic simulations of expected number of clusters in COSMOS in a certain (M_{500} , z) range + noise
- Incorporation of the SIDES sky model (Béthermin et al 2017)
- Purity: Percentage of true detection in the sample
 - \circ We reach a purity of ~50% at SNR > 4.0



Arxiv: 2506.18231 2

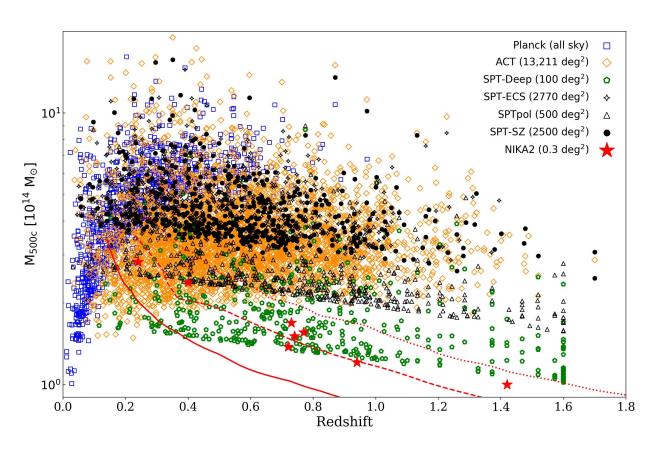
Cluster sample characterization


- Realistic simulations of expected number of clusters in COSMOS in a certain (M_{500} , z) range + noise
- Incorporation of the SIDES sky model (Béthermin et al 2017)
- Purity: Percentage of true detection in the sample
 - \circ We reach a purity of ~50% at SNR > 4.0
- Completeness: Fraction of true cluster detected
 - $_{\odot}$ We reach 80% completeness at all redshift for $M_{500}{\sim}1.8{\times}10^{14}M_{\odot}$

Completeness as a function of mass

Arxiv: 2506.18231 21

Very high resolution blind detection


- Validated NIKA2 catalog properties (purity and completeness) with simulations
- Future crosscheck on future large surveys catalog (e.g. Euclid, Vera Rubin)

We can blindly detect galaxy clusters with NIKA2

Need follow up observations to characterize cluster properties

Arxiv: 2506.18231

Very high resolution blind detection

- Validated NIKA2 catalog properties (purity and completeness) with simulations
- Future crosscheck on future large surveys catalog (e.g. Euclid, Vera Rubin)

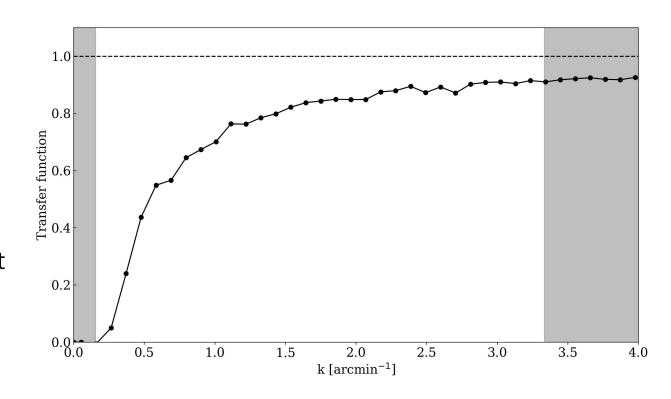
We can blindly detect galaxy clusters with NIKA2

Need follow up observations to characterize cluster properties

Arxiv: 2506.18231

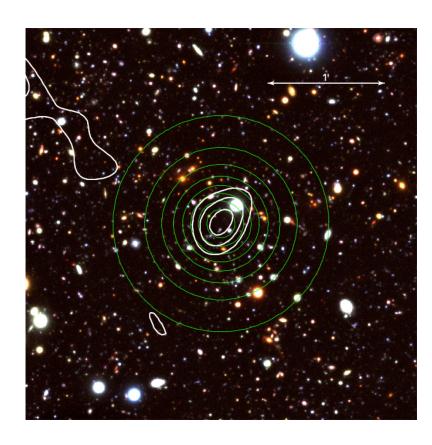
Conclusion and perspectives

- First blind detection of galaxy clusters at sub-20 arcsec resolution
 - ✓ 16 candidates, 8 with a known counterpart
 - ✓ Median redshift of the sample: z ~ 0.74, Median mass: $M_{500} \sim 1.54 \times 10^{14} M_{\odot}$
 - ✓ Accepted for publication in A&A (Arxiv: 2506.18231)
- Follow-up observations
 - ✓ Accepted NOEMA (4" resolution) proposal will target highest redshift candidate (z~1.42)
 - ✓ Nobeyama 45m telescope with the Grenoble-Tsukuba 100 GHz KIDs camera
- Good prospects for a high-resolution survey of the Northern sky
 - ✓ Upgrades of NIKA2 (extra frequency bands and larger FoV) to cover a larger area
 - ✓ A new instrument placed on a 13m telescope to cover thousands of deg² (see Mateo's poster)

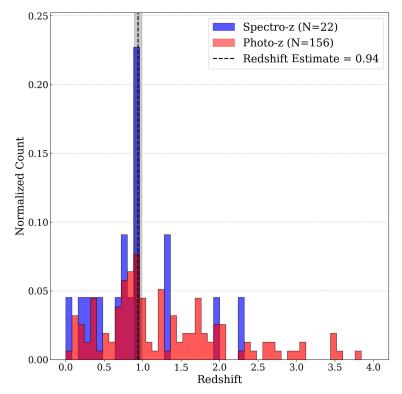

Backup

Cluster candidate sample

Candidate Name	RA	DEC	S/N	Z	$ heta_{500}$	Y ₅₀₀	M ₅₀₀	Matching cluster name
	0	0			arcmin	10 ⁻⁵ arcmin ²	$10^{14}~{ m M}_{\odot}$	(distance ["])
NK2-CL J100045.8+020514.3	150.1907	2.0873	5.31	_	$0.74^{+0.40}_{-0.20}$	$1.60^{+1.45}_{-0.56}$	_	_
NK2-CL J095937.7+022320.4	149.9071	2.3890	5.00	0.74±0.03 (p)	$1.38^{+0.12}_{-0.13}$	$3.35^{+1.77}_{-1.34}$	$1.51^{+0.40}_{-0.38}$	ALH J0959.38+0223.03 (17.8")
NK2-CL J100004.7+021604.4	150.0194	2.2679	4.97	_	$0.92^{+0.62}_{-0.29}$	$1.95^{+2.65}_{-0.88}$	_	_
NK2-CL J100043.6+023232.4	150.1818	2.5423	4.87	_	$0.65^{+0.31}_{-0.13}$	$1.11^{+0.75}_{-0.30}$	_	_
NK2-CL J100025.3+023346.4	150.1056	2.5629	4.67	0.72±0.02 (p)	$1.37^{+0.12}_{-0.14}$	$2.90^{+1.57}_{-1.24}$	$1.38^{+0.38}_{-0.37}$	[BMH2011] 124 (11.5")
NK2-CL J100100.6+022134.4	150.2524	2.3596	4.67	0.77±0.01 (p)	$1.36^{+0.09}_{-0.11}$	$3.47^{+1.42}_{-1.25}$	$1.56^{+0.33}_{-0.34}$	[SCC2012] 0788 (9.1")
NK2-CL J100004.4+021148.4	150.0183	2.1968	4.60	0.94 ± 0.05 (s)	$1.10^{+0.09}_{-0.10}$	$2.10^{+0.91}_{-0.78}$	$1.21^{+0.27}_{-0.27}$	[KLI2009] 146* (8.7")
NK2-CL J100103.4+022208.4	150.2641	2.3690	4.54	_	$0.59^{+0.23}_{-0.09}$	$0.85^{+0.35}_{-0.20}$	_	_
NK2-CL J100011.9+021256.5	150.0494	2.2157	4.48	$0.24\pm0.08^{**}(p)$	$3.79^{+2.11}_{-1.01}$	$28.20^{+69.45}_{-16.79}$	$2.83^{+1.55}_{-0.88}$	XMMXCS J100012.3+021246.7 (11.7")
NK2-CL J100101.1+020146.6	150.2546	2.0296	4.30	_	$0.71^{+0.44}_{-0.16}$	$0.96^{+0.83}_{-0.29}$	_	_
NK2-CL J100054.3+020126.4	150.2262	2.0240	4.28	1.42±0.01 (p)	$0.81^{+0.05}_{-0.06}$	$1.56^{+0.62}_{-0.53}$	$1.00^{+0.21}_{-0.21}$	[SCC2012] 1517 (16.0")
NK2-CL J100009.1+022140.3	150.0378	2.3612	4.27	_	$2.56^{+2.96}_{-1.16}$	14.30 ^{+81.99} -10.55	_	_
NK2-CL J095942.6+023056.5	149.9277	2.5157	4.08	0.73 ± 0.02 (s)	$1.45^{+0.11}_{-0.13}$	$4.10^{+1.83}_{-1.55}$	$1.69^{+0.39}_{-0.39}$	DESI 2353000051 (12.0")
NK2-CL J100120.5+022828.2	150.3353	2.4745	4.07	_	$0.71^{+0.44}_{-0.15}$	$0.93^{+0.75}_{-0.28}$	_	_
NK2-CL J100008.4+020908.3	150.0350	2.1523	4.04	_	$0.77^{+0.65}_{-0.21}$	$1.20^{+1.72}_{-0.44}$	_	_
NK2-CL J095958.5+022910.4	149.9938	2.4862	4.01	0.40±0.01 (p)	$2.52^{+0.22}_{-0.23}$	$12.24^{+6.22}_{-4.77}$	$2.38^{+0.61}_{-0.57}$	[SCC2012] 0270 (14,8")


Transfer function

- Transfer function computed from simulated white noise signal
- Analysis optimised for point sources explains why clusters seem to be so compact
- Future work needed for better cluster detection and characterization


Transfer function of the 2mm NIKA2 data

Spectro and photo redshift catalogs

HSC *gri* map with SNR contours (white) and best-fit tSZ model (green)

- In most case, redshift estimates are found at the peak of redshift distribution
- Some unidentified candidates also have welldefined redshift peaks

Normalized spectroscopic (blue) and photometric (red) redshift counts within a 1 arcmin radius