### Optical Cluster Cosmology through Redshift Space Distortion

Tomomi Sunayama (ASIAA)

### Clusters as a cosmological probe

- \* Count the number of clusters (as a function of halo mass)
- Tail of halo mass function (i.e., number of clusters) is sensitive to cosmological parameters

With Dark Energy



Without Dark Energy



Virgo consortium

# Challenge in Cluster Cosmology

- Cosmic Visions Report (2016): "The number of massive galaxy clusters could emerge as the most powerful cosmological probe if the masses of the clusters can be accurately measured."
- Cluster mass is not a direct observable
- \* Optical clusters are known to be susceptible to many systematics



## Recipe for Optical Cluster Cosmology







#### How much information does cluster clustering provide?

\* Constraints on  $\Omega_m$  and  $\sigma_8$  are improved by 45% and 23%, respectively.



### Photometric Surveys: Now and Future



Inspired by E. Krause

Ise Credit: ESO, Fermilab/Reidar Hahn, NAOJ, ESA/C. Carreau, Rubin Obs/NSF/AURA, NASA

Arai et al (incl. TS),2023

### Roadmap of Spectroscopic Galaxy Surveys



Credit: SDSS, NOIRLab, NAOJ, ESA/C. Carreau, NASA

### What information can 3D clustering provide?

- \* Baryon Acoustic Oscillations (BAOs)
- Redshift-Space Distortion (RSD)





Reid+2014

### What information can 3D clustering provide?

- Baryon Acoustic Oscillations (BAOs)
- Redshift-Space Distortion (RSD)



$$cz = H_0 r + v_{\text{pec}}$$
Redshift  
"What we measure"
$$\begin{bmatrix} \text{Expansion} \\ \text{of the} \\ \text{Universe} \end{bmatrix} \qquad \begin{bmatrix} \text{Motion of} \\ \text{Galaxies} \end{bmatrix}$$

$$|v_{\text{pec}}| \sim \frac{d\sigma_8}{d\ln a} = f\sigma_8 \approx \Omega_m^{\gamma} \sigma_8$$

$$\boxed{\mathbf{v}_{\text{pec}}}$$

$$\delta_g^{(s)}(k, \mu) = (b + f\mu^2) \delta_m^{(r)}(k)$$

#### RSD can further improve cosmological constraints

- \* Constraints on  $\Omega_m$  and  $\sigma_8$  are improved by 33% and 15% respectively.
- \* RSD alone can improve the precisions  $\delta$ of  $\Omega_m$  and  $\sigma_8$  by 60% and 40% respectively.



### How does projection effects bias the result?

• Misidentification of member galaxies along the line-of-sight



The projection effect alters the mass-richness relation!

#### Projection effects beyond Mass-Richness Relation

\* The boost on two-halo term cannot be explained by mass difference!



What is the cause of this boost on large scales?

### Distribution of clusters is anisotropic

- Cluster finder preferentially identify clusters on aligned filaments along LOS as clusters
- Preferential selection of aligned structure is the cause of the anisotropic distribution of clusters (and therefore boost on lensing and clustering amplitudes)



## Modeling Projection Effects



Model the excess mass as a multiplicative factor

 $\Pi(R) = \begin{cases} \Pi_0(R/R_0) & \text{for } R \le R_0, \\ \Pi_0 + c \ln(R/R_0) & \text{for } R > R_0. \end{cases}$ 

And treat it as effective biases  $\Sigma(R) = \Pi(R)\Sigma^{iso}(R),$  $w_p(R) = \Pi^2(R)w_p^{iso}(R).$ 

Park,TS+2022

### Projection effects can be modeled

\* The projection effect model can correct the cosmology constraints for the case of lensing and projected correlation functions.



## Projection effects on 3D clustering

 Projection effects will alter the 3D correlation functions in a more complicated manner...



#### Projection effects can bias the constraints in a different way

\* Using 3D clustering in the presence of projection effects can bias cosmological constraints, in particular  $\sigma_8$ !



# Summary/Future Work

- \* Combining cluster clustering to cluster abundance and lensing can improve the constraints on  $\Omega_m$  and  $\sigma_8$  by 45% and 23%
- \* Additional information from RSD can improve  $\Omega_m$  and  $\sigma_8$  by 33% and 15% respectively
- \* Projection effects can bias the constraints on  $\Omega_m$  and  $\sigma_8$