CHEX-MATE: The first census of ICM discontinuities in a representative sample of galaxy clusters

♦ INAF ISTITUTO NAZIONALE DI ASTROPISICA

mmUniverse 2025 - June 26th

Authors: Giulia Campitiello, Stefano Ettori, Lorenzo Lovisari, et al.

What do we mean by SB discontinuities?

X-ray images and brightness profiles reveal sharp changes in ICM structure.

Classification: shocks or cold fronts?

Key morphological features in galaxy clusters help distinguish between dynamical interactions.

SHOCKS: pressure waves triggered by high-velocity mergers.

Classification: shocks or cold fronts?

Key morphological features in galaxy clusters help distinguish between dynamical interactions.

SHOCKS: pressure waves triggered by high-velocity mergers.

COLD FRONTS: 2) **sloshing** triggered by off-axis/minor merger events.

The challenge: detect edges in CHEX-MATE

A XMM-Newton analysis of a large sample of galaxy clusters (**116 objects**). How to identify these features in the **most objective** way possible?

Chandra: resolution~0.5 arcsec.

XMM: resolution~13 arcsec

The method

Using the best-fit β-model of the SB profile, we generate a model image to identify SB excesses/deficits and gradient steepness variations, revealing the following features:

CASE A: SB excess with gradient steepening-> SUBSTRUCTURES

The method

Using the best-fit β-model of the SB profile, we generate a model image to identify SB excesses/deficits and gradient steepness variations, revealing the following features:

CASE B: SB deficit with gradient flattening-> CAVITIES

The method

Using the best-fit β-model of the SB profile, we generate a model image to identify SB excesses/deficits and gradient steepness variations, revealing the following features:

CASE C: SB deficit with gradient steepening-> EDGES

Application on CHEX-MATE

Example of a **cold front** detection in one object from the sample.

Candidate region shown in white, detected **edge** in black..

SB profile across the edge: model includes PSF smoothing.

Comparison with the literature

The CHEX-MATE catalog of ICM discontinuities

We found 69 edges, of which 41 are newly detected;

48 clusters out of 116 (~ **40%**) show at least **one edge**.

The fraction of edges is significantly higher at **high masses** and at **high redshift**.

The CHEX-MATE catalog of ICM discontinuities

No peculiar trend is observed between relaxed, mixed and disturbed systems.

Properties of the edges

Edges in **disturbed** systems are **stronger**, **more distant** and **more aligned** than edges in **relaxed** systems.

Properties of the edges

Edges in **disturbed** systems are **stronger**, **more distant** and **more aligned** than edges in **relaxed** systems.

Properties of the edges

Strong correlation between BCG offset and distance from the X-ray peak.

Spectral classification of the edges

We used wavelet temperature maps for a **preliminary classification** of edges into shocks and cold fronts. We found **14 candidate shocks** and **42 candidate cold fronts**.

Comparison with the radio information

All clusters with at least one edge host either a radio halo, a radio relic, or a mini-halo.

The reverse is not true: **only half** of the clusters with **diffuse radio emission** show at least **one edge**.

The majority of the mixed systems with radio emission, do not show any edge -> **Projection** effects at work.

[X-ray and radio view of G113.91 from Campitiello et al. 2023]

Conclusions

CHEX-MATE: The first census of ICM discontinuities in a representative sample of galaxy clusters

M. G. Campitiello^{1,*}, S. Ettori^{2,3}, L. Lovisari^{4,5}, F. Gastaldello⁴, H. Bourdin^{6,7}, P. Mazzotta^{6,7}, M. Rossetti⁴, A. Botteon⁸, R. Cassano⁸, F. De Luca^{6,7}, D. Eckert⁹, B. Forman⁴, M. Gaspari¹⁰, S. Ghizzardi⁴, M. Gitti^{11,8}, S. T. Kay¹², B. J. Maughan¹³, E. Pointecouteau¹⁴, G. W. Pratt¹⁵, E. Rasia^{16,17}, J. Sayers¹⁸, and M. Sereno^{2,3}

- **Definition of a method** for the detection of edges up to z~0.55;
- Identification and characterisation of the edges in CHEX-MATE;
- **Preliminary classification** in shocks and cold fronts;
- Investigation of the **limits** of XMM analysis;
- Comparison with the radio emission

Conclusions

CHEX-MATE: The first census of ICM discontinuities in a representative sample of galaxy clusters

M. G. Campitiello^{1,*}, S. Ettori^{2,3}, L. Lovisari^{4,5}, F. Gastaldello⁴, H. Bourdin^{6,7}, P. Mazzotta^{6,7}, M. Rossetti⁴, A. Botteon⁸, R. Cassano⁸, F. De Luca^{6,7}, D. Eckert⁹, B. Forman⁴, M. Gaspari¹⁰, S. Ghizzardi⁴, M. Gitti^{11,8}, S. T. Kay¹², B. J. Maughan¹³, E. Pointecouteau¹⁴, G. W. Pratt¹⁵, E. Rasia^{16,17}, J. Sayers¹⁸, and M. Sereno^{2,3}

SUBMITTED...waiting for review!