CHEX-MATE: towards a consistent universal pressure profile and cluster mass reconstruction

M. Muñoz Echeverría, et al. CHEX-MATE and BATMAN collaborations

mm Universe - Chicago, June 2025

CHEX-MATE

The Cluster HEritage project with XMM-Newton: Mass Assembly and Thermodynamics at the Endpoint of structure formation

118 SZ selected clusters (PSZ2 SNR>6.5) Pls: M. Arnaud/G. W. Pratt – S. Ettori

(some) Objectives:

- Understand interplay between gravitational collapse and baryonic effects
- Consistent picture of cluster mass estimates
- \rightarrow Talk by S. Ettori

The universal pressure profile (UPP)

Why important?

Used in:

- Cluster detection algorithms
- tSZ power spectrum cosmological analysis

But, P_{500} and R_{500} are functions of M_{500}

- Need to assume M_{500} to scale the profiles
- Which *M*₅₀₀?

Objectives

Towards the universal pressure profile with CHEX-MATE

- Build a **framework** for a consistent estimation of the **universal pressure profile (UPP)**
- Use the **best cluster** M_{500} **masses** to normalise the profiles
- **Propagate** the **uncertainties** of *M*₅₀₀ and account for their **correlation** with the UPP
- (Propagate their impact on the estimation of the tSZ PWS and its use for cosmology)

Data and sample

Pressure profiles and M_{500} estimates

Thermal pressure profiles:

- XMM-Newton + Planck profiles
- Radial coverage: from 0.03 to 2.5 R₅₀₀

Individual cluster *M*₅₀₀ estimates:

• Dynamical masses from Sereno et al. 2025

Data and sample

Pressure profiles and M_{500} estimates

Thermal pressure profiles:

- XMM-Newton + Planck profiles
- Radial coverage: from 0.03 to 2.5 R₅₀₀

Individual cluster *M*₅₀₀ estimates:

• Dynamical masses from Sereno et al. 2025

Model

A mass estimate *M*₅₀₀ per cluster

The P_{500} - M_{500} scaling If self-similar $\delta = 2/3$

Model

$$P(r) = P_{500} \times \mathbb{P}(x)$$

$$\mathbb{P}(x) = \frac{P_0}{(c_{500}x)^{\gamma} \left[1 + (c_{500}x)^{\alpha}\right]^{(\beta - \gamma)/\alpha}}$$
gNFW model for the UPP

Model

 $P(r) = P_{500} \times \mathbb{P}(x)$

+ Intrinsic scatter with respect to the UPP: σ_{int}

 $\sigma_{\rm int}(x) = \sigma_1 \exp\left[-\omega x\right] + \sigma_0 x$

With a correlation length Lint

+ Ratio between X-ray and tSZ pressure: η_T

$$\eta_T \sim P^X / P^{\text{tSZ}}$$

Joint fit of the UPP and individual M_{500}

Free parameters of the model:

- ° **Global** parameters: P_{500} - M_{500} scaling relation (δ), gNFW, σ_{int} , L_{int} , η_T
- Individual parameters: mass *M*₅₀₀ per cluster

Accounting for correlations and improving both $\mathbb{P}(x)$ and M_{500}

Strong correlations between parameters: priors on M_{500} needed

Validation on mock profiles

Joint fit of UPP and individual M₅₀₀

- (A) M_{500} priors centred on true M_{500} , δ fixed
- (B) M_{500} priors centred on true M_{500} , δ free
- (C) M_{500} priors scattered with respect to true M_{500} , δ fixed
- (D) M_{500} priors biased with respect to true M_{500} , δ fixed

With unbiased & scattered M_{500} priors: we recover unbiased UPP and M_{500}

Joint UPP and M_{500} measurement

Fit to CHEX-MATE data with dynamical M_{500} priors

Gaussian priors on M_{500} , centred on their dynamical estimates from Sereno et al. 2025

- Scattered, but (almost) no bias
- (almost) Uncorrelated to pressure profiles

Joint UPP and M_{500} measurement

Dynamical M_{500} are refined to scale the pressure profiles the best

Joint UPP and M_{500} measurement

Refined M_{500} : same accuracy and better precision M_{500} uncertainties propagated to the UPP

M. Muñoz Echeverría – mm Universe 2025

Impact of the UPP on the M_{500} determination

Fitting M_{500} by assuming UPPs from the literature

Impact of the UPP shape and δ on the measured signal \rightarrow coherent UPP, δ , and M_{500} needed for unbiased cosmology!

Coherence-check: when UPP fixed to A10, compatible with MMF3

- Framework to jointly fit the UPP and clusters' M_{500}
 - Dynamical *M*₅₀₀ as priors: **scattered & unbiased**, **uncorrelated** to pressure
 - Improve M_{500} based on the thermal pressure distribution
 - **Propagate** the M_{500} **uncertainties** to the UPP \rightarrow cosmology
- Strong correlation between UPP and *M*₅₀₀: self-consistent framework needed

Backups

Covariance matrix modelling

$$C_i(\theta) = \Sigma_{\text{data},i} + \Sigma_{\text{int},i}(\theta)$$

Intrinsic scatter covariance matrix:

$$\Sigma_{\text{int},i}^{k,k}(\theta) = \left[P_{\text{mod},i}(r_{i,k},\theta) \times \sigma_{\text{int}}(r_{i,k},\theta)\right]^2$$
$$= \left[P_{500,i}(\theta) \ \mathbb{P}(r_{i,k},\theta) \times \sigma_{\text{int}}(r_{i,k},\theta)\right]^2$$

$$\Sigma_{\text{int},i}^{k,l}(\theta) = \sqrt{\Sigma_{\text{int},i}^{k,k} \Sigma_{\text{int},i}^{l,l}} \exp\left[-\frac{(x_{i,k} - x_{i,l})^2}{2L_{\text{int}}^2}\right]$$

M. Muñoz Echeverría - mm Universe 2025

Individual cluster masses

Posterior distributions

M. Muñoz Echeverría - mm Universe 2025

Universal Pressure Profiles

M. Muñoz Echeverría - mm Universe 2025

Intrinsic scatter

M. Muñoz Echeverría - mm Universe 2025

Intrinsic scatter

Validation on mock profiles

Joint fit of UPP and individual M_{500}

