The SPT-3G-Deep Cluster Catalog

Unlocking a new regime of low-mass, high-redshift clusters in the new era of SPT CMB experiments

Kayla Kornoelje, Lindsey Bleem, Eli Rykoff

Arxiv: 2503.17271

Overview:

- Introduction
- The SPT-Deep Cluster Catalog
- Impact of dust emission of the high-redshift, tSZ selection function

- Introduction
- The SPT-Deep Cluster Catalog
- Impact of dust emission of the high-redshift, tSZ selection function

Introduction

The SPT-Deep field:

- 100 deg² centered at RA: 352.5 and Dec: -55
- Composed of the SPT-3G main field and SPTpol 100d + 500d fields

Multi-wavelength coverage:

- Herschel SPIRE (sub-mm)
- DES (optical)
- Spitzer (infrared)

Survey	$f Depth \ (\mu K ext{-arcmin})^{ ext{ a}}$	Angular Resolution
SPT-3G (2019-20	23)	
95 GHz	3.2	1.6'
150 GHz	2.6	1.2'
$220 \mathrm{GHz}$	9.0	1.1'
SPTpol 500d (201	3–2016)	
95 GHz	11.3	1.7'
$150 \mathrm{GHz}$	5.2	1.2'
SPTpol 100d (201	2–2013)	
95 GHz	13.2	1.7'
150 GHz	6.2	1.2'

- Introduction
- The SPT-Deep Cluster Catalog
- Impact of dust emission of the high-redshift, tSZ selection function

500 cluster candidates (**442** confirmed)

Redshift estimates:

- DES z < ~1.1
- Spitzer z > 1.1 1.6
- z > 1.6 -> perfect for further exploration with Euclid

SPT-Deep is ~2x than any previous tSZ selected cluster catalog, making it the <u>deepest</u> tSZ cluster catalog to <u>date</u>

500 cluster candidates (**442** confirmed)

Redshift estimates:

- DES z < ~1.1
- Spitzer z > 1.1 1.6
- z > 1.6 -> perfect for further exploration with Euclid

SPT-Deep is ~2x than any previous tSZ selected cluster catalog making it the <u>deepest</u> tSZ cluster catalog to <u>date</u>

Overview:

- Introduction
- The SPT-Deep Cluster Catalog
- Impact of dust emission of the high-redshift, tSZ selection function

Observed tSZ decrement is mitigated due to positive emission from dusty star forming galaxies

Due to the increase in star-formation in cluster environments up to cosmic noon (z~2) this emission could bias the detection of galaxy clusters at high-z

Constrained Internal Linear Combination Filter

 Using the fit frequency dependence of dust emission at high-redshift, we null the dust-signal in the combined multi-frequency CMB maps

 Galaxy clusters obscured by dust emission should have a higher SNR in the dust-nulled maps

Constrained Internal Linear Combination Filter

The results demonstrate that the dust-nulled cluster catalog is consistent with the minimum-variance catalog, both in the number of recovered clusters and SNR for clusters.

We observe no increase in SNR for high-redshift clusters between the two maps.

Conclusions

- The SPT-Deep catalog is the deepest cluster catalog to date with the lowest median mass highest median redshift of any tSZ selected cluster sample with multi-wavelength coverage from the radio to the sub-mm
- We do not observe a bias in the tSZ selection function at high-redshift due to dust, which we attribute to the inclusion of the 220GHz frequency band

Arxiv: 2503.17271