

NIKA2 maps tracing dust grain evolution in cores of nearby filaments

Carsten Kramer

IRAM/Grenoble

on behalf of the GEMS 30m Large Program team and the NIKA2 collaboration

Outline

- NIKA2 / IRAM 30-meter telescope
- Starless cores
- Taurus Molecular Cloud 1 (TMC1)
 - 1mm/2mm ratio map
 - Beyond Rayleigh Jeans
 - Herschel Gould Belt Survey in Taurus: Av, T_{dust} (Kirk et al. 2024)
 - Map of dust index $\beta_{1,2}(R_{1,2}, T_d)$
- Analysis
 - Dust properties
 - Models of dust opacities (here: Ossenkopf & Henning 1994)
 - β statistics and possible interpretation
- First results

NIKA2

A continuum camera at the IRAM 30-m telescope

Band	Number of KIDs	Wavelength	Bandwidth	NEFD	HPBW	FoV
NIKA2 2 mm/150 GHz	616	2.00 mm	125-170 GHz	$9 \pm 1 \text{ mJy*s}^{1/2}$	17.6"	6.5'
NIKA2 1 mm/260 GHz	2x1140	1.15 mm	240-280 GHz	$30 \pm 3 \text{ mJy}^*\text{s}^{1/2}$	11.1"	6.5'

Comments: The half-power beam widths and the NEFDs are taken from Perotto et al. 2020. The NEFDs are extrapolated to a sky opacity of 0 and 90 deg. elevation.

- + Offered to the community since October 2017
- + Upgrade of 30m drive system and surface paint in 2023/2024
- + Upgrade of NIKA2 in 3/2025: new 1mm arrays, new dichroic, ...
- + https://publicwiki.iram.es/Continuum/NIKA2/Main

NIKA2 maps tracing dust grain evolution in cores of nearby filaments • Carster

Institut de Radioastronomie Millimétrique

Starless cores

- Starless cores allow to study the **initial phases** of star formation: no shocks or outflows, no internal heating source, shielding from FUV (A_v > 10mag), low temperatures ($T_d < 20$ K), dense n>10⁴cm⁻³, self-gravitating.
- Why studying starless cores ?
 - influence of environment
 - turbulence, ionization fraction
 - gas elemental abundances, depletions
 - dust grain chemistry
 - magnetic fields
 - grain coagulation and formation of ice mantles from gas depletion
- Here: NIKA2 observations following-up on EMIR Large Program on gas phase molecular abundances in starless cores (GEMS) by Asuncion Fuente et al..
- This presentation: Taurus Molecular Cloud 1 (TMC1) at 135pc distance (12", 1620au, 0.008pc).

Models of dust opacity spectra (Ossenkopf & Henning 1994) for coagulated grains and a gas density of 10⁵ cm⁻³ in proto-stellar cores, **varying the ice thickness** (cf. e.g. Ormel et al. 2011). The **mm-slope**, i.e. **Beta, changes with grain properties,** increasing with ice thickness.

Most molecules freeze-out onto dust grains in the central part of dense cores with A_v >10mag (CO-depletion: Kramer et al. 1999; Caselli et al. 1999; Nagy, Spezzano, Caselli et al. 2019).

TMC1: NIKA2 maps and Herschel Gould Belt Survey

5pc

NIKA2 2mm and 1mm maps 18" and 11" resolution, respectively. Contours start at 6 σ and rise in steps of 12 σ with 1 σ (2mm)=0.28mJy/beam, 1 σ (1mm)=1.0mJy/beam.

Background: Herschel 160μm (blue) to 500μm (red) 13.8° by 7.3° (André et al. 2010, 2019,, Kirk et al. 2024)

β - the dust emissivity index

$$\kappa_{\nu} = \kappa_0 \left(\frac{\nu}{\nu_0}\right)^{\beta}$$

$$T_d$$
, β are weighted averages along the line of sight.

$$I_{\nu} = \tau_{\nu} B_{\nu}(T_{\rm d}) = \kappa_{\nu} \Sigma B_{\nu}(T_{\rm d})$$

with the emissivity cross-section per gram of dust and gas and the gas surface density.

Convolve 1mm map to 18" resolution using Gaussian kernel. Create maps of R_{1,2} at 18" resolution. To first order, in the Rayleigh-Jeans limit, hν<<kT, the NIKA-2 1mm/2mm flux ratio R_{1,2} is solely a function of β, the dust emissivity index.

$$\beta_{\rm RJ} = \frac{\log R_{1,2}}{\log \left(v_{1 \, \rm mm} / v_{2 \, \rm mm} \right)} - 2$$

Here, the 1mm/2mm ratio is a rather robust quantity, as observations are done simultaneously, i.e. with the same instrument under the same conditions.

β - the dust emissivity index

$$\tau_{\nu} = \tau_{\nu} B_{\nu}(T_{\rm d}) = \kappa_{\nu} \Sigma B_{\nu}(T_{\rm d})$$

• T_d , β are weighted averages along the line of sight.

Convolve 1mm map to 18" resolution using Gaussian kernel. Create maps of R_{1,2} at 18" resolution. To first order, in the Rayleigh-Jeans limit, $h\nu \ll KT$, the NIKA-2 1mm/2mm flux ratio $R_{1,2}$ is solely a function of β , the dust emissivity index.

 $\kappa_{\nu} = \kappa_0 \left(\frac{\nu}{\nu_0}\right)^{\beta}$

$$\beta_{\rm RJ} = \frac{\log R_{1,2}}{\log \left(v_{1 \,\,\rm{mm}} / v_{2 \,\,\rm{mm}} \right)} - 2$$

Here, the 1mm/2mm ratio is a rather robust quantity, as observations are done simultaneously under the same conditions with the same instrument and through the same atmosphere.

 However, at the low temperatures of pre-stellar cores of ~10K, the RJ limit doesn't hold and the flux ratio is a function of β and also of the dust temperature T_d :

$$R_{1,2} = \frac{B_{\nu_{1.2mm}}[T_d]}{B_{\nu_{2.0mm}}[T_d]} \left(\frac{\nu_{1.2mm}}{\nu_{2.0mm}}\right)^{\beta}$$

Here, dust temperatures were estimated from fits of modified black-bodies to PACS/SPIRE Herschel 160, 250, 350, 500µm data from the Herschel Gould Belt Survey (HGBS, André et al. 2010; Kirk et al. 2024).

This allows to create maps of $\beta_{1,2}$ at 18" resolution.

TMC1 region

18

1.6

1.4

1.2

NIKA2 2mm map [MJy/sr] NIKA2 1mm map [MJy/sr]

Av map: 4, 7, 10, ... mag T_{dust} map [K] + Av contours

 $\beta_{1,2}(R_{1,2}, T_{dust})$ map + Av contours

Crosses: HGBS cores (unbound, starless)

- T_{dust}, N(H₂) maps at 36" resolution. From modified black body (MBB) fits to HGBS Herschel data with beta = 2 fixed (Kirk et al. 2024).
- Av = N(H₂) / 9.36 10²⁰ (Bohlin, Savage, Drake 1978) Av contours at 4, 7, 10, 13, 16mag.
- Note the drop of dust temperatures in the dense interiors of the filaments and cores from ~14K to 11-12K (averaged along the lines of sight).

to retrieve extended emission missed by NIKA2 (feathering, cf. Matt Smith et al. 2021)

Retrieving the extended emission

Institut de Radioastronomie Millimétrique

Retrieving the extended emission

NIKA2 power spectra before and after feathering with Planck data (cf. Matt Smith et al. 2021)

rOt

Institut de Radioastronomie Millimétrique

NIKA2 maps tracing dust grain evolution in cores of nearby filaments • Carsten Kramer • mm Universe 2025

Map of dust emissivity index in TMC1

Cores in Taurus: First results (1)

Literature for Taurus & Perseus: β =1.2-1.9±0.1 NGC1333-C7 by Navarro-Almaida et al. 2022 (MUSTANG-2, SCUBA, SPIRE/PACS) β =2.1±0.1 TMC1-C also by Navarro-Almaida et al. 2022 β =2.0±0.5 B10 covering B213-C6 by Scibelli et al. 2023 (NIKA2) β =2.4±0.3 B213 by Bracco et al. 2017 (NIKA) β =1.6-2.0±0.4 L1544 by Chacon-Tanarro et al. 2019 (MUSTANG-2, AzTEC) [cf. 2017 paper with NIKA]

- Results obtained here:
 - Combining NIKA2 and Planck maps ("feathering") is important to retrieve the emission at scales larger than the NIKA2 field-of-view. This lowers the beta index.
 - In general, the mm/submm slopes are steepening towards the TMC1 cores. Cuts shown an increase of beta from $\beta_{1,2} \sim 1.4$ at 7 mag to $\beta_{1,2} \sim 1.8$ at 20 mag.

Radioastronomie Millimétrique

Cores in Taurus: First results (2)

- Grain models show that the mm slope of the SED, i.e. the β index, is a strong function of grain properties e.g. coagulation and/or ice mantles.
- Possible interpretation of the observed β variation:

β increases with ice layer thickness (Ossenkopf & Henning 1994, OH94), i.e. with evolutionary stage. This has implications for e.g. the efficiency of chemical desorption.

```
OH94: Ossenkopf & Henning 1994 Models
with n_H=10^5 cm<sup>-3</sup>, coagulated
\beta=1.51 no ice
\beta=1.81 thin ice mantle
\beta=1.89 thick ice mantle
```