Advancing Galactic Foreground Modeling for CMB Studies

Kenny Lau Caltech mm Universe 2025 2025-06-24

- Old models: d1/2/3/4, s1/2/3, a1/2, f1 (B. Thorne *et al.* 2017)
- New models from Pan-Ex GS Group:
 - Dust: d9, d10, d11, d12
 - Synchrotron: s4, s5, s6, s7
 - CO: co1, co2, co3
- The latest multiple-component, highresolution models by a public python module pysm3
- Finalized in 2023, widely used
- Paper online recently: arXiv:2502.20452

Python Sky Model (PySM)

Full-sky Models of Galactic Microwave Emission and Polarization at Sub-arcminute Scales for the Python Sky Model

The Pan-Experiment Galactic Science Group

JULIAN BORRILL , ^{1, 2, 3} SUSAN E. CLARK ⁽¹⁾, ^{4, 5} JACQUES DELABROUILLE ⁽¹⁾, ^{6, 7} ANDREI V. FROLOV ⁽¹⁾, ⁸ SHAMIK GHOSH ^(D),^{1,6} BRANDON S. HENSLEY ^(D),⁹ MONICA D. HICKS,^{4,5,10} NICOLETTA KRACHMALNICOFF ^(D),^{11,12,13} KING LAU ,¹⁴ MYRA M. NORTON ,¹⁵ CLEMENT PRYKE ,^{16, 17} GIUSEPPE PUGLISI ,^{18, 19, 20} MATHIEU REMAZEILLES ,²¹ ELISA RUSSIER ,^{7,6} BENJAMIN THORNE ,^{7,22} JIAN YAO ,¹¹ ANDREA ZONCA ,²³ ¹Computational Cosmology Center & Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA²Space Sciences Laboratory, University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720, USA ³Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104, USA ⁴Department of Physics, Stanford University, Stanford, CA 94305, USA ⁵Kavli Institute for Particle Astrophysics & Cosmology, P.O. Box 2450, Stanford University, Stanford, CA 94305, USA ⁶CNRS-UCB International Research Laboratory, Centre Pierre Binétruy, IRL 2007, CPB-IN2P3, Berkeley, CA 94720, USA ⁷Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA ⁸Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, BC, Canada ⁹ Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA ¹⁰Department of Computer Science, Stanford University, Stanford, CA 94305, USA ¹¹International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy ¹²Institute for Fundamental Physics of the Universe (IFPU), Via Beirut, 2, 34151 Grignano, Trieste, Italy ¹³Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Trieste, Via Valerio 2, 34127 Trieste, Italy ¹⁴Department of Physics, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA ¹⁵Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA ¹⁶ Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA ¹⁷School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA ¹⁸Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, via S. Sofia, 64, 95123, Catania, Italy ¹⁹INFN - Sezione di Catania, Via S. Sofia 64, 95123 Catania, Italy ²⁰INAF - Osservatorio Astrofisico di Catania, via S. Sofia 78, 95123 Catania, Italy ²¹Instituto de Física de Cantabria (CSIC-UC), Avda. de los Castros s/n, 39005 Santander, Spain ²²Department of Physics and Astronomy, University of California, Davis, CA 95616, USA ²³San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA

(Dated: March 3, 2025)

ABSTRACT

Polarized foreground emission from the Galaxy is one of the biggest challenges facing current and upcoming cosmic microwave background (CMB) polarization experiments. We develop new models

Methodology

• Dust:
$$S_{\nu} = A_d^S (\nu / \nu_0)^{\beta_d} B_{\nu}(T_d)$$

• Synchrotron: $S_{\nu} = A_s^S \left(\nu/\nu_0\right)^{\beta_s + c_s \ln(\nu/\nu_c)}$

- Amplitude parameters: A_d^S , A_s^S
- Spectral parameters: β_d , T_d , β_s , c_s
- Per-pixel frequency scaling from amplitude maps at $\nu_0 = 353, 23 \text{ GHz}$
- Main idea:
 Preserve reliable large-scale modes from full-sky templates & Add stochastic small-scale fill-in

Low					$(\beta_d, T_d) = ($	(1.48, 19.6 K)	
Complexity	Tag	Spectrum Model	Templates	Templates	Frequency scaling	Frequency scaling	Stochasticity
			Large scale	Small scale	Large scale	Small scale	
			$\begin{array}{l} \text{GNILC PR2} \ I \\ + \ \text{GNILC PR3} \end{array}$	$egin{array}{c} { m Modulated} & + \\ { m polarization} \end{array}$	_		
	d9	Modified blackbody	Q/U 353 GHz	fraction tensor	Uniform β_d , T_d	Uniform β_d , T_d	
	d10	"	"	"	$\beta_d, T_d \text{ from} $ GNILC PR2	Modulated	
	d11	"	"	"	"	"	$I, Q, U \& \beta_d, T$
	d12	6 layers, each is a different modified blackbody	$\begin{array}{l} {\rm GNILC\ PR2\ I} \\ +\ {\rm GNILC\ }Q/U \\ {\rm 353\ GHz} \end{array}$	Modulated + gaussian	Random realization for each layer	Random realization for each layer	
High Complexity					GNILC dust:		
					less CIB cont	amination	

New PySM Dust Models

New PySM Synchrotron Models

	$\beta_s =$	- 3.1	
Templates	Frequency scaling	Frequency scaling	Stochasticity
Small scale	Large scale	Small scale	
/Iodulated + olarization			
raction tensor	Uniform β_s	Uniform β_s	
"	β_s from Haslam, S-PASS, WMAP	Modulated	
"	"	"	$I, Q, U \& \beta_s$
"	$^{"+} c_s { m \ from} \ { m ARCADE}$	$"+ c_s$ fluctuations	
5	Haslam I sca $ u_0 = 23 \mathrm{GHz}$	aled to	
J			

PR3 vs. PySM P Maps (353 GHz)

6

45

40

-35

30 $\mu K_{\rm CMB}$ 25

-20

-15

0.5

_0.5

-1

<u>,0</u>5

У

0.5

- Dust *BB* in small fields: full-sky PySM vs. NPIPE A/B maps at 353 GHz
- $N_{\rm side} = 8 \rightarrow 768$ patches
- Gaussian-tapered circular masks ($f_{\rm sky} \approx 0.8\%$)
- Patch-wise *BB* spectra for $|b| > 30^{\circ}$
- Model behavior vary over patches

 \rightarrow averaging band powers to capture the overall trend amid NPIPE noise

Patch-wise PySM vs. NPIPE D_i^{BB}

- d12 underestimates dust level (e.g., SPIDER, BICEP field)
- d1/d9 generally agrees with data
- With high S/N, d9 vastly improves in low- and high-l
 - \rightarrow GNILC template + extrapolation
- Opposing trend: d9 overestimates when $\overline{D_l^{BB}} < 10^1 \,\mu \mathrm{K_{CMB}^2}$ (e.g., SPIDER, BICEP field)
- GNILC overestimates dust levels in that regime

a point = a small field

Patch-wise PySM vs. NPIPE $\overline{D_l^{BB}}$

- d12 underestimates dust level (e.g., SPIDER, BICEP field)
- d1/d9 generally agrees with data
- With high S/N, d9 vastly improves in low- and high-l
 - \rightarrow GNILC template + extrapolation
- Opposing trend: d9 overestimates when $\overline{D_l^{BB}} < 10^1 \,\mu {\rm K}_{\rm CMB}^2$ (e.g., SPIDER, BICEP field)
- GNILC overestimates dust levels in that regime

y-axis = PySM D_l^{BB}

x-axis = NPIPE $\overline{D_{I}^{BB}}$

Specific Small-field Analysis: BK Field

BICEP/Keck field:

- 600 sq-deg, one of the cleanest patches in the Southern sky
- BK18: high S/N dust BB measurement via a parametric model
- MBB for dust: $A_{d,l=80} = 4.4 \,\mu \text{K}_{\text{CMB}}^2$, $\beta_d = 1.5, \alpha_d = -0.66, T_d = 19.6 \,\mathrm{K}$
- Sync amplitude upper limit
- Critical for ongoing/future B-mode searches: BA, SPT-3G+, SO, S4, ...

10

10 *BB* auto- and cross-spectra from a subset of 4 maps

2110.00483

Reanalyzing PySM Maps in BK Field

"Re-observing" PySM d/s (& NPIPE 353 GHz) maps in the BK field

- BK linear map-making process

 → BK observation matrix incorporating
 filtering and deprojection
- Step 1: B3 beam convolution + crop
- Step 2: B3 observation matrix
- Step 3: B3 purification matrix + apodization mask
- Replicate the impact of BK instrument & map-making pipeline for d1/d9/d10/d12 at 85/150/220/270/353 GHz & s1/s4/s5/s6/s7 at 23/30/40 GHz

PySM d9 353 GHz U

PySM d9 353 GHz Q

Reobserved PySM d9 353 GHz Q

Reobserved PySM d9 353 GHz U

B-Purified and Masked PySM d9 353 GHz Q

RA (degree)

B3-processed d9 Q/U (353 GHz)

Full-sky dust D_1^{BB} with associated errors

- d1: 3 times higher, high-*l* power deviates more
- d9: high- $l \approx$ power law, 2 times higher overall ullet
- d12: high- $l \approx$ power law, power drop at low l•
- *Bonus:* NPIPE excess at $l \approx 100$, no clear ullethigh-*l* power decay amid noise

PySM vs. BK18 Dust

All 353 GHz

Full-sky dust D_1^{BB} with associated errors

- d1: 3 times higher, high-*l* power deviates more
- d9: high- $l \approx$ power law, 2 times higher overall •
- d12: high- $l \approx$ power law, power drop at low l•
- *Bonus:* NPIPE excess at $l \approx 100$, no clear ullethigh-*l* power decay amid noise

PySM vs. BK18 Dust

All 353 GHz

 D_1^{BB} changes over frequencies

- Single-amplitude fit to BK18 dust ML model
- d9: \approx 2, generally less than d1
- d10: decreasing \rightarrow slightly larger β_d relative to BK18: $1.49^{+0.13}_{-0.12}$ (GNILC template: $\beta_d = 1.6$)
- d12: more complicated due to multiplelayer behavior

PySM vs. BK18 Dust

Ratio of PySM *BB***/BK18 dust** *BB*

	$85~\mathrm{GHz}$	$150~\mathrm{GHz}$	$220~\mathrm{GHz}$	$270~\mathrm{GHz}$	353 G
d1	2.42	2.63	2.81	2.94	3.13
d9	2.17	2.12	2.08	2.06	2.03
d10	0.96	1.30	1.59	1.77	2.03
d12	2.76	2.27	2.08	2.02	1.96

PySM vs. BK18 Synchrotron

Full-sky synchrotron D_{l}^{BB} with associated upper limits

- s1: relatively flat, all below upper limits
- s5: excess power at $l \leq 50$ (70)
- PySM WMAP 23 GHz templates vs. BK18 NPIPE 30/40 GHz prefers smaller A_s
- Similar results for s4/s6/s7 at 30/40 GHz
- Revisit with future BA 30/40 GHz results

All 23 GHz

Recommended Model Suite

Complexity	Model set	
Low	d9, s4, f1, a1, co1	Smal quenc emiss
Medium	d10, s5, f1, a1, co3	Extra parar level.
High	d12, s7, f1, a2, co3	Dust larize

- Three recommended model sets: low, medium, high complexity
- All $N_{\text{side}} = 8192$ except free-free and CO ($N_{\text{side}} = 2048$)
- Realistic over 1–1000 GHz \bullet
- d9, d10, d11: up to 3000 GHz
- Application and validation from the mm-wave community

Short description

l-scale emission fluctuations in amplitude only; no frecy decorrelation in dust or synchrotron. Unpolarized CO sion.

apolation to small scales for both amplitude and spectral meters in dust and synchrotron. CO polarization at the 1%

layer model, spatially varying synchrotron curvature, poed AME and CO.

Future Outlook

- We have demonstrated overall improvement of models. Moving forward:
 - New amplitude templates from improved algorithms
 - New spectral parameter templates from improved algorithms & high S/N data
 - Merging partial sky observations
 - Employing physical realism small-scale emission structure
- Improved internal workflow \rightarrow new iterations of the iterative process \bullet

Backup Slides

Nethodology

- Dust: $S_{\nu} = A_d^S (\nu/\nu_0)^{\beta_d} B_{\nu}(T_d)$
- Synchrotron: $S_{\nu} = A_s^S \left(\nu/\nu_0\right)^{\beta_s + c_s \ln\left(\nu/\nu_c\right)}$
- Amplitude parameters: A_d^S , A_s^S
- Spectral parameters: β_d , T_d , β_s , c_s
- Per-pixel frequency scaling from amplitude maps at $\nu_0 = 353, 23$ GHz
- Main idea: preserve reliable largescale modes, extrapolate them to small scales, and add stochastic small-scale fill-in

GNILC PR3 Q/U (353 GHz)

GNILC PR2 T_d/β_d

arXiv:1807.06212

Polarization Fraction Tensor Framework

How to generate small-scale (filamentary) Galactic emissions?

A simplified picture:

- Dust *I* probes dust density structure (projection)
- Dust *P* modulated by large-scale Galactic magnetic fields
- $p \equiv P/I \approx$ isotropic + small fluctuations from magnetic field turbulent

Corresponding framework:

- $(I, Q, U)/I \rightarrow (x, y, z) \rightarrow D_I^{xy}$ for generating realizations
- Introduce non-Gaussianity during reverse transformation

21

Polarization Fraction Tensor Framework

How to generate small-scale (filamentary) Galactic emissions?

A simplified picture:

- Dust I probes dust density structure (projection)
- Dust *P* modulated by large-scale Galactic magnetic fields
- $p \equiv P/I \approx$ isotropic + small fluctuations from magnetic field turbulent

Corresponding framework:

- $(I, Q, U)/I \rightarrow (x, y, z) \rightarrow D_I^{xy}$ for generating realizations
- Introduce non-Gaussianity during reverse transformation

 $(I, Q, U) \leftrightarrow (i, q, u)$ $i \equiv \frac{1}{2} \ln(I^2 - P^2)$ $I = e^i \cosh \xi$ $Q = \frac{q}{\xi} e^{i} \sinh \xi$ $q \equiv \frac{1}{2} \frac{Q}{P} \ln \frac{I+P}{I-P}$ $U = \frac{u}{\xi} e^{i} \sinh \xi$ $u \equiv \frac{1}{2} \frac{U}{P} \ln \frac{I+P}{I-P}$ $\xi \equiv (q^2 + u^2)^{1/2}$

I > 0 and $0 \le p \le 1$ for all (i, q, u)

When $p \ll 1$: $i \simeq \ln I, q \simeq Q/I, u \simeq U/I$

Model Construction Flowchart

Amplitude parameters

1. Starting from amplitude template maps

New dust templates: Commander \rightarrow GNILC

Low complexity models: uniform spectral parameters (d9/s4)

Amplitude parameters

transformation

Amplitude parameters

3. Preserving large-scale modes and synthesizing small-scale modes

	ℓ_0	ℓ_1	ℓ_2	ℓ_*	$lpha_{tt}$	α_{ee}	$lpha_{te}$	
Dust	50	100	2000	80	-0.80	-0.42	-0.50	
Synchrotron	10	38	400	36	-1.00	-0.84	-1.00	
Preserve (<i>tt</i> , <i>ee</i> , <i>bb</i>) spectra between $[l_0, l_1]$								
Perform D_{i}	$\frac{xx}{l} \propto$	$l^{\alpha_{xx}}$	power	r-law	/ fit wit	th fixe	d inde	
Extrapolate the spectra to fill $[l_1, l_2]$								
Synthesize (t, e, b) realizations (stochasticity								
High-pass filter (t, e, b) with cut-off l_1								
				Ļ			T	
Temporary small-scale realizations								

26

Amplitude parameters

Amplitude parameters

5/6. Combining scales and transforming back 1.

Amplitude parameters

7. Similar process in parallel for spectral parameter template maps

No polarization fraction tensor transformation

T 7 T 7		ℓ_0	ℓ_1	lpha			
$D_l^{XX} \propto l^{\alpha_{XX}}$:	eta_d	200	400	0.04			
	T_d	100	400	-0.47			
	eta_s	10	36	-0.61			
	c_s	10	36	-0.61			
Synth	nesize	ed + m	nodula	ted sma	II-scales		
Mode stitching using the same method							
			↓ ↓				
d9/s4 at $ u$	$v_0 + re$	esultar	nt spec	ctral par	ameter maps		
		=	d10/s	5			

Amplitude parameters

New PySM CO Models

mplates	Templates	Stochasticity
rge scale	Small scale	
2 Type-1 maps thed to 1°		
"		
"	Simulated high galactic clouds	
$ \begin{array}{l} $		

Galactic Plane: $(l, b) = (180^{\circ}, -10^{\circ})$

-0.5

PR3 vs. PySM / Maps (353 GHz)

BICEP Field: $(l, b) = (318^\circ, -61^\circ)$

Large-field Analysis

TT, EE, BB overview:

- Dust: NPIPE (PR4) A × B vs. PySM d1, d9, d12 at 353 GHz
- Sync: BeyondPlanck vs. PySM s1, s5 at 30 GHz
- Different galactic masks $\rightarrow f_{sky}$ variation
- General agreement in large-scales (except d12)
- Smooth transition, mitigated artifacts in stitching scales $l_* \approx 100, 40$
- Polarization: d9 OK, d12 underestimates
- s1, s5: excellent for *TT* (*l* < 300);
 s5 better for *EE* (*l* < 100)

Dust

Synchrotron

Smoothing the "mode-stitching" connections

•
$$R \equiv \overline{D_{\text{low-}\ell}^{BB}} / \overline{D_{\text{high-}\ell}^{BB}}$$

•
$$D_l^{BB} \propto l^{-0.54} \rightarrow R = 1.83$$

• NPIPE:
$$R = 1.85 \pm 0.93$$

- Back-and-forth efforts! lacksquare
 - d1: $R = 2.03 \pm 0.72$
 - d9: $R = 2.35 \pm 0.77$
 - d12: $R = 2.26 \pm 0.91$
- Small deviations due to $\alpha_d = 0.54$ fit in *bb*

PySM *BB* **Spectra in BK Field**

Recurring (and relentless) foreground questions from S4:

- "What are the changes of PySM model behavior in the BK field?"
- "How to compare the full-sky PySM dust models with BK measurements from heavily-filtered maps?"
- "Is the BK dust measurement consistent with the Planck measurement at 353 GHz? What are their errors?"
- "What about the synchrotron foreground?"

Reanalyzing BK18 BB Spectra

BK18 spectral decomposition analysis

- *BB* bandpower component separation ullet(lensed- Λ CDM+r+dust+synchrotron)
- MCMC per-bandpower \bullet
- Strong constraints on dust ullet(consistency with ML model) & upper limit on sync band powers at 95 GHz and 150 GHz
- Reanalyzed at 23 GHz and 353 GHz \bullet

Dust Decorrelation

 $R_l^{XY}(\nu_1 \times \nu_2) \equiv \frac{D_l^{XY}(\nu_1 \times \nu_2)}{\sqrt{D_l^{XY}(\nu_1 \times \nu_1) D_l^{XY}(\nu_2 \times \nu_2)}}$

- LR71 and $50 \le l \le 160$
- PySM dust $R^{BB}(217 \times \nu)$ vs. PR3 $R^{BB}(217 \times 353) < 0.991$ (97.5% confid)
- d1/d10 below, d12 coming close
- Future high frequency observations to differentiate

Quantifying Extragalactic Contamination

- Cross-correlating the local fluctuations in PySM maps and galaxy density maps
- GLADE+ catalog: 90% complete at $z \sim 0.1$
- GLADE+ z-maps: stacked in HEALPix grid + redshift bins over 0 < z < 0.35
- d10: less CIB contamination from GNILC templates

Relative correlation [arbitrary units] 9.0 0.0 1.0 d1 d10 d12 0.250.300.000.200.050.100.15 \mathcal{Z}

